首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A theoretical model of nonscience majors' motivation to learn science was tested by surveying 369 students in a large‐enrollment college science course that satisfies a core curriculum requirement. Based on a social‐cognitive framework, motivation to learn science was conceptualized as having both cognitive and affective influences that foster science achievement. Structural equation modeling was used to examine the hypothesized relationships among the variables. The students' motivation, as measured by the Science Motivation Questionnaire (SMQ), had a strong direct influence on their achievement, as measured by their science grade point average. The students' motivation was influenced by their belief in the relevance of science to their careers. This belief was slightly stronger in women than men. Essays by the students and interviews with them provided insight into their motivation. The model suggests that instructors should strategically connect science concepts to the careers of nonscience majors through such means as case studies to increase motivation and achievement. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 1088–1107, 2007  相似文献   

2.
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.  相似文献   

3.
We developed a rubric for measuring students' ability to reason and write scientifically. The Rubric for Science Writing (Rubric) was tested in a variety of undergraduate biology laboratory courses (total n = 142 laboratory reports) using science graduate students (teaching assistants) as raters. Generalisability analysis indicates that the Rubric provides a reliable measure of students' abilities (g = 0.85) in these conditions. Comparison of student performance in various biology classes indicated that some scientific skills are more challenging for students to develop than others and identified a number of previously unappreciated gaps in the curriculum. Our findings suggest that use of the Rubric provides three major benefits in higher education: (1) to increase substance and consistency of grading within a course, particularly those staffed by multiple instructors or graduate teaching assistants; (2) to assess student achievement of scientific reasoning and writing skills; and (3) when used in multiple courses, to highlight gaps in alignment among course assignments and provide a common metric for assessing to what extent the curriculum is achieving programmatic goals. Lastly, biology graduate students reported that use of the Rubric facilitated their teaching and recommended that training on the Rubric be provided to all teaching assistants.  相似文献   

4.
A study of science textbooks and students' responses indicates that many key concepts are treated at different levels of meaning. As a consequence of these observations we have attempted to examine what we have termed students' “preferential thinking style.” To do this, the level of meaning that students preferred when thinking about each of 16 key concept definitions associated with the theme, the nature of matter, was measured for each concept. The same concept definitions had already been studied in respect to students' ability to recognize them. Each of the 16 concept terms was formulated at the three levels of meaning defined by us as: membership, partial association, and generalization. The resulting test of preferential thinking style was administered to representative samples of Hindi-speaking high school students in India (826) and English-speaking high school students in Tasmania (1635). Some marked changes in the relative development of preferential thinking styles for the two groups were observed which raises questions associated with the importance of this notion as an outcome of science teaching.  相似文献   

5.
Several recent studies suggest concrete learners make greater gains in student achievement and in cognitive development when receiving concrete instruction than when receiving formal instruction. This study examined the effect of concrete and formal instruction upon reasoning and science achievement of sixth grade students. Four intact classes of sixth grade students were randomly selected into two treatment groups; concrete and formal. The treatments were patterned after the operational definitions published by Schneider and Renner (1980). Pretest and posttest measures were taken on the two dependent variables; reasoning, measured with Lawson's Classroom Test of Formal Reasoning, and science achievement, measured with seven teacher made tests covering the following units in a sixth grade general science curriculum: Chemistry, Physics, Earth Science, Cells, Plants, Animals, and Ecology. Analysis of covariance indicated significantly higher levels (better than 0.05 and in some cases 0.01) of performance in science achievement and cognitive development favoring the concrete instruction group and a significant gender effect favoring males.  相似文献   

6.
The Next Generation Science Standards (NGSS) strives to shift science learning from the teacher as a single cognitive agent, to a classroom community in which participants are working together in directing the classroom's communal knowledge to figure out questions about how phenomena occur, and building, testing, and refining their ideas to address those questions. To achieve this type of classroom environment, teachers should attend to students' knowledge and ideas and pay attention to how students are located within teacher-led interactions, such as being positioned as active discussants or designated listeners. In this study, we explore if and how this is occurring in the NGSS era. We used a naturalistic inquiry to explore how an experienced first-grade teacher used a new NGSS-aligned unit that called for students to use the science and engineering practices (SEP) to build content knowledge. We used a macro-analytic lens to answer the research question “how are class discussions shaped to address the SEP”? We used a micro-analytic lens to answer the research question “how are students positioned during these science discussions in this classroom?” Evidence suggests that the teachers' whole class discussions incorporated and involved the SEP which were specified in the unit lessons for content learning. However, on a micro-analytic level, we found that few students were positioned as active discussants. The teacher heavily relied on those students who could provide succinct and clearly relevant answers while positioning the remainder of the students as silent spectators. Implications from this research suggest that not only new NGSS curriculum materials need to focus on what students should know and do but they also need to address heuristics for teachers that show them how to position all of their students as active doers of science so all students have opportunities to build deeper, core science knowledge.  相似文献   

7.
Research in science education confirms the importance of self-efficacy in students' persistence and success in the sciences. The current study examined the role of science self-efficacy in nonspecialist, arts and communication-oriented students encountering science in a general education context. Participants (N = 275) completed a beginning- and end-of-semester survey including a Science Self-Efficacy Scale, a “connection to science” measure—the Inclusion of Science in Self Scale—and a Science Anxiety Scale. Participants also responded to two open-ended “sources of science efficacy” questions, and provided background/demographic information and access to their academic records. Results showed a significant increase in science self-efficacy and connection to science—although no change in science anxiety—over the course of the semester. The observed shift in self-efficacy for minority and international students was of particular note. These students started the course with lower confidence but, by the end of the semester, reported comparable science self-efficacy, and achieved similar grades to their White/Non-Hispanic and US resident classmates. Contrary to expectations, science self-efficacy did not predict performance in the class. However, students' self-reported sources of efficacy indicated increased confidence in using science in daily life, and confirmed the value of mastery experiences and of personally meaningful, student-centered course design in scaffolding student confidence. Results are discussed in terms of the individual and instructional factors that support science self-efficacy and student success in this unique, general education science environment.  相似文献   

8.
9.

Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.  相似文献   

10.
11.
The purpose of this study is to provide insight into short-term professionalization of teachers regarding teaching socioscientific issues (SSI). The study aimed to capture the development of science teachers' pedagogical content knowledge (PCK) for SSI teaching by enacting specially designed SSI curriculum materials. The study also explores indicators of stronger and weaker development of PCK for SSI teaching. Thirty teachers from four countries (Cyprus, Israel, Norway, and Spain) used one module (30–60 min lesson) of SSI materials. The data were collected through: (a) lesson preparation form (PCK-before), (b) lesson reflection form (PCK-after), (c) lesson observation table (PCK-in-action). The data analysis was based on the PCK model of Magnusson, Krajcik, and Borko (1999). Strong development of PCK for SSI teaching includes “Strong interconnections between the PCK components,” “Understanding of students' difficulties in SSI learning,” “Suggesting appropriate instructional strategies,” and “Focusing equally on science content and SSI skills.” Our findings point to the importance of these aspects of PCK development for SSI teaching. We argue that when professional development programs and curriculum materials focus on developing these aspects, they will contribute to strong PCK development for SSI teaching. The findings regarding the development in the components of PCK for SSI provide compelling evidence that science teachers can develop aspects of their PCK for SSI with the use of a single module. Most of the teachers developed their knowledge about students' understanding of science and instructional strategies. The recognition of student difficulties made the teacher consider specific teaching strategies which are in line with the learning objectives. There is an evident link between the development of PCK in instructional strategies and students' understanding of science for SSI teaching.  相似文献   

12.
A large number of American elementary school students are now studying science using the hands‐on inquiry curricula developed in the 1990s: Insights; Full Option Science System (FOSS); and Science and Technology for Children (STC). A goal of these programs, echoed in the National Science Education Standards, is that children should gain “abilities to do scientific inquiry” and “understanding about scientific inquiry.” We have studied the degree to which students can do inquiries by using four hands‐on performance assessments, which required one or three class periods. To be fair, the assessments avoided content that is studied in depth in the hands‐on programs. For a sample of about 1000 fifth grade students, we compared the performance of students in hands‐on curricula with an equal number of students with textbook curricula. The students were from 41 classrooms in nine school districts. The results show little or no curricular effect. There was a strong dependence on students' cognitive ability, as measured with a standard multiple‐choice instrument. There was no significant difference between boys and girls. Also, there was no difference on a multiple‐choice test, which used items released from the Trends in International Mathematics and Science Study (TIMSS). It is not completely clear whether the lack of difference on the performance assessments was a consequence of the assessments, the curricula, and/or the teaching. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 467–484, 2006  相似文献   

13.
To improve assessments of academic achievement, test developers have been urged to use an “assessment triangle” that starts with research‐based models of cognition and learning [NRC (2001) Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press]. This approach has been successful in designing high‐quality reading and math assessments, but less progress has been made for assessments in content‐rich sciences such as biology. To rectify this situation, we applied the “assessment triangle” to design and evaluate new items for an instrument (ACORNS, Assessing Contextual Reasoning about Natural Selection) that had been proposed to assess students' use of natural selection to explain evolutionary change. Design and scoring of items was explicitly guided by a cognitive model that reflected four psychological principles: with development of expertise, (1) core concepts facilitate long‐term recall, (2) causally‐central features become weighted more strongly in explaining phenomena, (3) normative ideas co‐exist but increasingly outcompete naive ideas in reasoning, and (4) knowledge becomes more abstract and less specific to the learning situation. We conducted an evaluation study with 320 students to examine whether scores from our new ACORNS items could detect gradations of expertise, provide insight into thinking about evolutionary change, and predict teachers' assessments of student achievement. Findings were consistent with our cognitive model, and ACORNS was revealing about undergraduates' thinking about evolutionary change. Results indicated that (1) causally‐central concepts of evolution by natural selection typically co‐existed and competed with the presence of naïve ideas in all students' explanations, with naïve ideas being especially prevalent in low‐performers' explanations; (2) causally‐central concepts were elicited most frequently when students were asked to explain evolution of animals and familiar plants, with influence of superficial features being strongest for low‐performers; and (3) ACORNS scores accurately predicted students' later achievement in a college‐level evolution course. Together, findings illustrate usefulness of cognitive models in designing instruments intended to capture students' developing expertise. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 744–777, 2012  相似文献   

14.
Observations were made of the progressive change in the cognitive development of 141 students over the course of their secondary education in an Australian private school. Cognitive development was measured in years 8, 10 and 12 usingBond's Logical Orerations Test. Rasch analysis of each of the data sets provided ability estimates for students in the year groups of 1993 (year 8), 1995 (year 10) and 1997 (year 12). Twenty-nine students from the year group of 1993 were tested on all three occasions. We analysed data from these 29 students in order to investigate the children's cognitive development across years 8, 10 and 12. We also examined the influence of the Cognitive Acceleration through Science Education (CASE)Thinking Science program on the cognitive development and scholastic achievement of these students. We found increased mental growth between years 8 and 10 for most students in theThinking Science cohort, which could not be predicted from their starting levels. There was a significant correlation between cognitive development and the scholastic achievement of these students. Although boys as a group were more advanced in cognitive development than girls in years 8 and 10, no difference was found in the rate of cognitive change based on sex up to year 10. However girls showed cognitive gains across years 10–12 which were not found in boys. The students who were new to the school also showed increased cognitive development in years 11 and 12. Students who had experienced theThinking Science course were more cognitively developed than students who joined the school after the intervention had taken place. This study supports the claim of Adey and Shayer that there is a relationship between cognitive development and scholastic achievement, even though we used different measures of cognitive development and scholastic achievement.  相似文献   

15.
This study investigates the effect of physics education on students' achievement in a large‐scale quantitative study of pre‐academic high school students throughout the Netherlands. Two aspects of teacher characteristics as perceived by their students are included: their “pleasantness” principally defined by their perceived friendliness and positive feedback and their “centeredness” principally defined by the perceived teacher centeredness in the lessons. Furthermore, this study includes four student aspects: their “general capability,” their “quantity of work,” their “quality of work,” and their “interest in the lessons.” Structural Equation Modeling is used in order to cluster the different variables defining the perceived pleasantness and the perceived centeredness of the teacher and the general capability, interest, and learning attitudes of the students. Furthermore, interrelations among these components and students' achievement are analyzed. Eventually, a very large effect of the students' general capability (61–72%) and a remarkably smaller effect of the remaining parameters (<3%) on achievement are detected. However, one should not yet conclude that teacher effect on high‐achieving‐students' achievement is consistently low. To the contrary, these results should be seen as an incentive to consider nonlinear effects, to vary ones viewpoint and to include more/other variables. In spite of the almost negligible correlation between the measured aspects of the physics teachers and achievement, the correlations between the teacher variables and the remaining student variables are quite significant. Both the perceived pleasantness and the centeredness of the teachers have a significant effect on the interest of their students. Furthermore, the pleasantness of the teacher correlates with the quality of the students' work and the centeredness of the teacher with their quantity of work. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 465–488, 2012  相似文献   

16.
The literature on students' attitudinal constructs in science education asserts that students hold dichotomous attitudes toward science (AS). For instance, studies from the Relevance of Science Education project reveal that students possess negative attitudes in terms of their favourableness toward school science, preference toward scientific careers, and emotional states toward science (negative intrinsic AS), despite their positive perception that science is important for society (positive extrinsic AS). The issue demands in‐depth examination, since not enough science educators have studied the effects of the dichotomous AS on science education. Rather, they have attempted to improve the uncategorised AS for stimulating student achievement in science education. Hence, the aim of this study is to clarify how the dichotomous attitude (intrinsic AS and extrinsic AS) relates to the two educational products in science: interest inventory and conceptual understanding. One hundred and sixteen physics learners in Japan were sampled for fitting the structural equation model in this study. Our final model validated by LISREL suggests that intrinsic AS exclusively stimulate students' interest and conceptual understanding in physics, while extrinsic AS fail to play their expected role. Finally, features of the sampled 10th‐graders and their dichotomous AS are further interpreted with the prevalent concept of the hidden curriculum.  相似文献   

17.
The purpose of this research effort was to examine Black male students' self‐perceptions of academic ability and gifted potential in science. The purposeful sample consisted of nine Black males between the ages of 14 and 18 years. Four categories of self‐perceptions of academic ability and gifted potential emerged from the data. These included: (a) gifted high achievers; (b) gifted “could do better” high achievers; (c) gifted “could do better” situational nonachievers; and (d) gifted “could do better” underachievers. Science teachers' influences that referenced participants' academic achievement pointed to validation. Participants' perceptions regarding how science teachers' influenced their academic performance focused on science teachers' content knowledge. Power dynamics germane to Black male participants' value or worth that directed their efforts in science learning environments are discussed. Implications are posited for science teaching, science education programs, and future research. This research endeavor was based on two premises. The first premise is that Black males' self‐perceptions of academic ability affect their science academic achievement. The second premise is that, given parental, peer, and community influences, science teachers have considerable influence on students' self‐perceptions of academic ability. However, the focus of this research was not on parental influences, peer influences, or any potential influences that participants' communities may have on their academic achievement. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 888–911, 2005  相似文献   

18.
This study explores several factors that account for cross-national differences in mathematics and science achievement for middle-school students from 39 countries based on the Third International Mathematics and Science Study. The results suggest that economic development level, as measured by GNP per capita, has a positive but relatively weak association with mathematics and science achievement. In contrast, variables reflecting a society's value on education, specifically the education of mathematics and science, demonstrates strong effects on students' achievement. These variables include students' perceived rigour of mathematics and science - a proxy of academic standards of mathematics and science, students' school attendance, the length of a school year, students' educational aspiration, and the average number of parents living with the student. The evidence presented in this study supports the argument that education reform aiming at improving mathematics and science achievement can hardly be successful without the efforts of the whole society.  相似文献   

19.
Using 1025 junior secondary class three (ninth grade) students and twelve science teachers, this study investigated the effects of cooperative, competitive, and individualistic science laboratory interaction patterns on students' achievement in science and the level of acquisition of practical skills. A 3 × 3 (interaction pattern by ability) factorial model was employed for data gathering. Significant main and interaction effects were found for both dependent measures. The cooperative group was found to be superior on the achievement measure with no difference between the competitive and individualistic groups. The competitive group, however, outperformed the others in practical skills. Additional data indicated that the mixed ability cooperative group did significantly better than the mixed ability competitive group in achievement but not in practical skills. In sum these data are supportive of the differential effects of cooperative, competitive, and individualistic goal structures on cognitive and psychomotor tasks. Results are discussed in terms of their implications for more productive science laboratory work.  相似文献   

20.
This replication studied the effect of two specific classroom climates on learning of science process skills and content achievement in college science classes. Two classroom climates were established and designated as discovery classroom climate (DCC) and nondiscovery classroom climate (NDCC). The term discovery denotes the degree of freedom the teacher established in classroom interactions, both verbal and nonverbal. Verbal interactions were monitored with the Science Laboratory Interaction Categories. These data indicate that students in the two classroom climates achieved equally as well on learning of biological content of the course and on scores in science process skills as measured by the Welch Science Process Inventory. This study indicates students in the less directive discovery climate learned as much content as a more directive comparison class—they lost nothing of what is traditionally sought in a college science class. Differences between the original and the replication study on the Science Process Inventory were noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号