首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

2.
(2 2 )设 a0 为常数 ,且 an =3n-1 -2 an-1 (n∈ N* ) .( )证明对任意 n≥ 1,an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na0 .( )假设对任意 n≥ 1,有 an >an-1 ,求a0 取值范围 .证法 1  ( )由已知 an =3n-1 -2 an-1 3.an3n =1- 2 .an-1 3n-1 .令 bn=an3n,则 3bn= 1- 2 bn-1 3(bn - 15 ) =- 2 (bn-1 -15 ) 数列 { bn- 15 }是以 b0 - 15 为首项 ,公比为 - 23的等比数列 ,且 b0 - 15 =a0 - 15于是 bn - 15 =(- 23) n(a0 - 15 ) ,又 bn =an3n,∴ an3n =(- 23) n(a0 - 15 ) +15 an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na.( )由 n≥ 1,an …  相似文献   

3.
文[1]证明了如下无理不等式: 设a,b,c∈R ,n≥2,则有 ∑n 1√(a/b c)n≥n 1/n 1√n(1) 当且仅当n=2且a=b=c时,上式取等号.  相似文献   

4.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

5.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

6.
本文讨论了n个正整数的和与积相等的一个必要条件,并证明了两个与素数、合数有关的结论. 结论1:若n(n≥2)个正整数a1,a2,…,an满足条件n∑i=1ai=n∏i=1ai,则ai≤n(i=1,2,…,n). 证明:(1)当n=2时,a1·a2-(a1+a2)=(a1-1)·(a2-1)-1≥0,当且仅当a1=a2=2时等号成立,故a1·a2=(a1+a2)时a1≤2,a2≤2,符合结论1. (2)当n≥3时,设a1≤a2≤…≤an.令a1=a2=…=an-2=1,an-1=2,an=n,则n∑i=1ai=n∏i=1ai=2n.此时ai≤n(i=1,2,…,n). 又设存在n(n≥2)个正整数b1,b2,…,bn满足条件1≤b1≤b2≤…≤bn-1≤bn,bn>n,且n∑i=1bi=n∏i=1bi.不妨令bi=1+ti(i=1,2,…,n-1,ti∈N),bn=n+tn(n∈N+).  相似文献   

7.
有些问题利用不等式取等号的条件很容易获得解决。我们先列出几个常见的不等式,然后举例说明之。①a_1 a_2 … a_n/n≥(a_1a_2…a_n)~(1/2),(a_i∈R~ ,i=1,2,…,n)当且仅当a_1=a_2=…=a_n时取等号。② a~2 b~2 c~2≥ab bc ca,(a,b,c∈R)当且仅当a=b=c时取等号。③ a_i,b_i∈R,=1,2,…,n,a_1b_1 a_2b_2 … a_nb_n≤(a_1~2 a_2~2 … a_n~2)(b_1~2 b_2~2 … b_n~2)当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时取等号。④ |a±b|≤|a| |b|,(a,b∈R)上式中取加号时不等式取等号的充要条件为ab≥0;取减号时,当且仅当ab≤0时取等号例1 如果四边形ABCD的边a,b,c,d满足a~4 b~4 c~4 d~4=4abcd,试判断四边形ABCD的形状。解据不等式①得 a~4 b~4 c~4 d~4≥  相似文献   

8.
本刊94年第1期《也谈一个不等式的加强》一文(下称文[1]),用数学归纳法证得如下命题设n∈N,n≥2,则当且仅当n=2时,等号成立.本文用数列不等式对下限不等式作进一步加强,对上限不等式作进一步弱化,得出一系列新的不等式.定理设n∈N,n≥2,则当且仅当n=2时,等号成立.证构造数列{xn},这里上是增函数.故x_(n l)<x_n即{x_n}是单调递减数列.当且仅当n=2时,等号成立.构造数列{y_n},这里故y_(n 1)>y_n{y_n}是单调递增数列.即y_(n 1)≥y_n≥y_(n-1)≥…≥y_3≥y_2.n=2时,等号成立.当且仅当n=2时,等号成立.当取b=3/5,或b=…  相似文献   

9.
高中代数下册第10页在推证基本不等式a~3 b~3 c~3≥3abc时附带证明了一个不等式:已知a、b、c∈R,则 a~2 b~2 c~2≥ab bc ca (1)(当且仅当a=b=c时取等号)  相似文献   

10.
对于一类条件为a >1,b >1,c >1的分式不等式 ,可借助“拆项法”及平均值不等式 ,予以统一巧证 .拆项法 1 a =(a - 1) + 1.此时有a≥ 2 (a - 1)·1.例 1 设a >1,b >1,求证 :ab - 1+ ba - 1≥4 .证明  ab - 1+ ba - 1≥ 2 (a - 1)·1b - 1+ (b - 1)·1a - 1≥ 2·2 a - 1b - 1· b - 1a - 1=4 .意外收获 aa - 1+ bb - 1≥ 4 ;aa - 1+ bb - 1+ cc - 1≥ 6 ;ab - 1+ bc - 1+ ca - 1≥ 6 ;ac - 1+ ba - 1+ cb - 1≥ 6等 .细心推敲 ,还不难获得如下 :推论 1 若ai>1,i=1,2 ,3,… ,n ,n∈N ,则a1a2 - 1+ a2a3- 1+… + an- 1an- 1+ ana1- 1≥2n …  相似文献   

11.
众所周知,若a,b∈R+,则a/b+b/a≥2,等号成立当且仅当a=b.此不等式可变形为如下的一个结论: 结论 若a,b∈R+,则a/b-1≥1-b/a,等号成立当且仅当a=b. 我们可以用上面的结论简证或简解一些对称式或轮换对称式问题,笔者通过举例来说明其运用. 例1 (《数学教学》问题384)设a,b,c是△ABC的三边,求证:a2/b+c-a+b2/c+a-b+c2/a+b-c≥a+b+c.  相似文献   

12.
文 [1 ]找到倍角三角形三边关系的系列表达式 :fn=0 ,其中 f1=a -b ,f2 =(a2 -b2 ) -bc ,f3 =(a2-b2 ) (a -b) -bc2 ,…本文得到 :定理 在△ABC中 ,∠A =n∠B ,BC =a ,CA=b ,AB =c,记Fn=Fn(a ,b,c) =(ac) n-1(b·sinAsinB-a) ,λ =a2-b2 c2 ,μ =ac,则Fn=b(C0 n-1λn -1-C1n -2 λn -3 μ2 C2 n -3 λn -5μ4-C3 n -4λn -7μ6 C4n -5λn -9μ8-… ) -aμn -1=0 . ( )证明 :由正弦定理 ,asinA=bsinB,∴Fn=(ac) n -1(b·sinAsinB -a) =(ac) n -1sinA· bsinB-asinA =0 .记t=cosB ,将sinA =sinnB展开 ,应用sin2 B =1 -t2 ,2t…  相似文献   

13.
题目设a0为常数,且an=3n-1-2an-1 (n∈N+) (Ⅰ) 证明对任意n≥1,an=(1)/(5)[3n+(-1)n-1*2n]+(-1)n*2n*a0; (Ⅱ) 假设对于任意n≥1有an>an-1, 求a0的取值范围.  相似文献   

14.
由两个数列{an}与{bn}所组成的递推式求其通项公式通常较为困难,在文[1]中作者给出了一道题的解如下:若数列{an}与{bn}满足a0=1,b0=0,且an+1=7an+6bn-3bn+1=9an+7bn-4(n∈N),试证an(n∈N)是完全平方数.导析:由初始条件和已知递推式,易求出a1=4,b1=4,且当n≥1时,(2an+1-1)+3bn+1=(14an+12bn-7)+3(8an+7bn-4)=(7+43)[(2an-1)+3bn]累次迭代,便得(2an-1)+3bn=(7+43)n-1[(2a1-1)+3b1]=(7+43)n请注意:这里是否有等比数列的模型呢?同样,我们还可建立上式的对偶式:(2an-1)-3bn=(7-43)n于是,将所得二式相加,得an=14(7+43)n+14(7-43)n+12因为7±43=(2…  相似文献   

15.
本文介绍递推式:f(n)=a~n b~n=(a b)f(n-1)-abf(n-2),(n≥2,n∈N)和f(n)= a~n b~n c~n=(a b c)f(n-1)-(ab bc ca)f(n-2) abcf(n-3)(n≥3,n∈N)及其应用。  相似文献   

16.
笔者在拙文[1]中证明了如下无理不等式: 设a,b,c∈R ,n≥2, 则有∑n 1√(a/b c)n≥n 1/n 1√n(1) 等式成立当且仅当n=2且a=b=c.  相似文献   

17.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

18.
定理1 如果a,b∈R那么a~2 b~2≥2ab(当且仅当a=b时取等号) 推论如果a,b∈R~ 那么(a b)/2≥(ab)~(1/2)(当且仅当a=b时取等号) 定理2 如果a、b、c∈R~ 那么a~3 b~3 c~3≥3abc(当且仅当a=b=c时,取等号) 推论如果a、b、c∈R~ 那么(a b c)/3≥(abc)~(1/3)(当且仅当a=b=c时,取等号) 以上两个重要不等式,在六年制高二代数上都作了在内容上彼此独立、在方法上各不相同的证明。教材对前者采用综合法证明,后者采用的是比较法。后者证明就其方法可取,但就其过程来讲倒觉得有些冗长。以上两个定理(含推论)有没有联系呢?回并是肯定的,事实上,它们之间是完全可以互相推证。 (—) 用定理1的推论证明定理2  相似文献   

19.
文 [1]给出了条件 x+ y=1下 1xn+ λyn的最小值定理 ,并利用 (a2 + b2 ) (c2 + d2 )≥ (ac+ bd) 2 (a,b,c,d∈ (0 ,+∞ )和待定系数法证明之 .定理 已知 x,y,λ∈ (0 ,+∞ )且 x+ y=1,则当且仅当 y∶ x=λ1n+ 1 时 ,1xn+ λyn(n∈N* )取最小值 ,最小值为 (1+ λ1n+ 1 ) n+ 1 .本文给出定理的一个简单证明 .证明 ∵x,y,λ∈ (0 ,+∞ ) ,n∈ N* ,且x+ y=1,∴ 1xn+ λyn=(1xn+ λyn) (x+ y) n =(1xn+λyn) (C0nxn+ C1 nxn-1 y+ C2nxn-2 y2 +… + Crnxn-ryr+… + Cnnyn)=1+ C1 nyx + C2ny2x2 +… + Crnyrxr +… + Cnnynxn+ λC0nxnyn + …  相似文献   

20.
杨波 《中等数学》2005,(6):24-25
题目a、b、c是正实数.证明:(a5-a2 3)(b5-b2 3)(c5-c2 3)≥(a b c)3.(2004,美国数学奥林匹克)研究该题,笔者发现可以将其堆广.命题若ai∈R ,i=1,2,…,n,则∏ni=1(a2n-1i-an-1i n)≥∑ni=1ain,n∈ .证明:因为ai∈R ,i=1,2,…,n,所以,(ani-1)(an-1i-1)≥0(n∈N )a2n-1i-ani-an-1i 1≥0a2n-1i-an-1i n≥ani (n-1).记Ani=ani (n-1),则由上式知∏ni=1(a2n-1i-an-1i n)≥∏ni=1(Ani).①下面证明∏ni=1(Ani)≥∑ni=1ain.因为1=an1An1 n-1An1=an1An1 1An1 … 1An1,1=1An2 an2An2 1An2 … 1An2,1=1An3 1An3 an3An3 1An3 … 1An3,……1=1Ann …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号