首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   1篇
教育   72篇
科学研究   3篇
各国文化   2篇
体育   6篇
信息传播   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   17篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
81.
In addition, he teaches at the University of Stockholm.  相似文献   
82.
This article is based on a project that investigated teachers’ knowledge in teaching an important aspect of algebra in the middle years of schooling—functions, relations and joint variation. As part of the project, 105 upper primary teachers were surveyed during their participation in Contemporary Teaching and Learning of Mathematics, a research project funded by the Catholic Education Office, Melbourne (2008–2012). Analysis of the survey responses revealed that two-thirds of teachers demonstrated content knowledge on a pattern generalisation task appropriate for upper primary levels of schooling (8- to 12-year-old students), but less than half demonstrated reasonable pedagogical content knowledge (PCK). On a paired variable (function machine) task, only one quarter of teachers demonstrated appropriate PCK. Although two-thirds of the teachers indicated that they currently taught content from the “Patterns and Algebra” strand of the new Australian Curriculum, less than half were able to provide examples of appropriate learning experiences for students. More than two-thirds of teachers expressed concern about their ability to teach this area of mathematics. Implications for the professional learning of teachers to improve their mathematics knowledge for developing students’ functional thinking are presented.  相似文献   
83.
Curricula designed in the context of the European Higher Education Area need to be based on both domain-specific and professional competencies. Whereas universities have had extensive experience in developing students’ domain-specific competencies, fostering professional competencies poses a new challenge we need to face. This paper presents a model to globally develop professional competencies in a STEM (science, technology, engineering, and mathematics) degree program, and assesses the results of its implementation after 4 years. The model is based on the use of competency maps, in which each competency is defined in terms of competency units. Each competency unit is described by a set of expected learning outcomes at three domain levels. This model allows careful analysis, revision, and iteration for an effective integration of professional competencies in domain-specific subjects. A global competency map is also designed, including all the professional competency learning outcomes to be achieved throughout the degree. This map becomes a useful tool for curriculum designers and coordinators. The results were obtained from four sources: (1) students’ grades (classes graduated from 2013 to 2016, the first 4 years of the new Bachelor’s Degree in Informatics Engineering at the Barcelona School of Informatics); (2) students’ surveys (answered by students when they finished the degree); (3) the government employment survey, where former students evaluate their satisfaction of the received training in the light of their work experience; and (4) the Everis Foundation University-Enterprise Ranking, answered by over 2000 employers evaluating their satisfaction regarding their employees’ university training, where the Barcelona School of Informatics scores first in the national ranking. The results show that competency maps are a good tool for developing professional competencies in a STEM degree.  相似文献   
84.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号