首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   764篇
  免费   151篇
  国内免费   17篇
教育   796篇
科学研究   43篇
体育   58篇
综合类   32篇
信息传播   3篇
  2024年   2篇
  2023年   12篇
  2022年   67篇
  2021年   72篇
  2020年   70篇
  2019年   54篇
  2018年   46篇
  2017年   50篇
  2016年   5篇
  2015年   9篇
  2014年   64篇
  2013年   74篇
  2012年   57篇
  2011年   70篇
  2010年   58篇
  2009年   48篇
  2008年   43篇
  2007年   18篇
  2006年   19篇
  2005年   16篇
  2004年   12篇
  2003年   13篇
  2002年   10篇
  2001年   12篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有932条查询结果,搜索用时 46 毫秒
101.
Hand-held devices have revolutionized communication and education in the last decade. Consequently, mobile learning (m-learning) has become popular among medical students. Nevertheless, there are relatively few studies assessing students' learning outcomes using m-learning devices. This observational study presents an anatomy m-learning tool (eMed-App), an application developed to accompany an anatomy seminar and support medical students' self-directed learning of the skeletal system. Questionnaire data describe where, how frequently, and why students used the app. Multiple choice examination results were analyzed to evaluate whether usage of the app had an effect on test scores. The eMed-App application was used by 77.5% of the students, mainly accessed by Android smartphones, and at students' homes (62.2%) in order to prepare themselves for seminar sessions (60.8%), or to review learning content (67%). Most commonly, students logged on for less than 15 minutes each time (67.8%). Frequent app users showed better test results on items covering eMed-App learning content. In addition, users also achieved better results on items that were not related to the content of the app and, thus, gained better overall test results and lower failure rates. The top quartile of test performers used the eMed-App more frequently compared to students in lower quartiles. This study demonstrated that many students, especially the high-performing ones, made use of the eMed-App. However, the app itself did not result in better outcomes, suggesting that top students might have been more motivated to use the app than students who were generally weak in anatomy.  相似文献   
102.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   
103.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   
104.
The presentation of pre-sliced specimens is a frequently used method in the laboratory teaching of cross-sectional anatomy. In the present study, a new teaching method based on a hands-on slicing activity was introduced into the teaching of brain, heart, and liver cross-sectional anatomy. A randomized, controlled trial was performed. A total of 182 third-year medical students were randomized into a control group taught with the prosection mode (pre-sliced organ viewing) and an experimental group taught with the dissection mode (hands-on organ slicing). These teaching methods were assessed by testing the students' knowledge of cross-sectional specimens and cross-sectional radiological images, and analyzing students' feedback. Using a specimen test on three organs (brain, heart, and liver), significant differences were observed in the mean scores of the control and experimental groups: for brain 59.6% (±14.2) vs. 70.1% (±15.5), (P < 0.001, Cohen's d = 0.17); for heart: 57.6% (±12.5) vs. 75.6% (±15.3), (P < 0.001, d = 0.30); and for liver: 60.4% (±14.5) vs. 81.7% (±14.2), (P < 0.001, d = 0.46). In a cross-sectional radiological image test, better performance was also found in the experimental group (P < 0.001). The mean scores of the control vs. experimental groups were as follows: for brain imaging 63.9% (±15.1) vs. 71.1% (±16.1); for heart imaging 64.7% (±14.5) vs. 75.2% (±15.5); and for liver imaging 61.1% (±15.5) vs. 81.2% (±14.6), respectively. The effect sizes (Cohen's d) were 0.05, 0.23, and 0.52, respectively. Students in the lower tertile benefited the most from the slicing experiences. Students' feedback was generally positive. Hands-on slicing activity can increase the effectiveness of anatomy teaching and increase students' ability to interpret radiological images.  相似文献   
105.
Incorporating metacognitive strategies in the classroom helps students monitor and adjust their learning strategies throughout the semester, and helps students progress from novice to expert learners in a subject. Journaling (i.e., reflective writing) is one metacognitive task that allows students to contemplate and articulate their skill development as they learn a new subject. The research reported here examines the use of ‘blogs’ (i.e., online journals) in an upper level undergraduate human anatomy course. The blogs both facilitated development of students' metacognitive skills and provided researchers insight into student metacognitive process. Data were examined from 92 students from three successive semesters (spring 2010, 2012 and 2014). Each student reviewed 10 radiology online cases throughout the semester and then reflected on their understanding of anatomy and radiology in an online blog for each case. A total of 927 blogs were examined for this research. The researchers used a grounded theory approach to analyze the blog narratives and develop a codebook based on common themes. The 927 blogs yielded 11,082 statements that were coded with the codebook. As the semester progressed, the blog entries showed that students demonstrated greater self-confidence in their abilities to understand the subject matter, expressed greater enthusiasm for anatomy in general, and they improved their metacognitive skills. This research illustrates that reflective writing in an undergraduate anatomy course not only facilitates improvement in student metacognitive skills, but also provides the instructor with evidence how a student progresses from novice to more experienced learner in anatomy.  相似文献   
106.
Virtual microscopy (VM) has been utilized to improve students' learning experience in microscope laboratory sessions, but minimal attention has been given to determining how to use VM more effectively. The study examined the influence of VM on academic performance and teacher and student perceptions and compared laboratory test scores before and after VM incorporation. A total of 662 third-year students studying histology and 651 fourth-year students studying pathology were divided into two groups. The light microscopy (LM) group used a light microscope in 2014 and 2015, while the LM + VM group used the VM platform and a light microscope in 2016 and 2017. Four factors positively predict laboratory scores (R square, 0.323; P < 0.001): (i) the pathology course and test-enhanced learning, (ii) the VM platform and experience, (iii) medical students and lecture scores, and (iv) female students. The LM + VM group exhibited less score variability on laboratory examinations relative to their mean than the LM group. The LM + VM group was also associated with fewer failing grades (F grade; odds ratio, 0.336; P < 0.001) and higher scores (A grade; odds ratio, 2.084; P < 0.001) after controlling for sex, school, course, and lecture grades. The positive effect of the VM platform on laboratory test grades was associated with prior experience using the VM platform and was synergistic with more interim tests. Both teachers and students agreed that the VM platform enhanced laboratory learning. The incorporation of the VM platform in the context of test-enhanced learning may help more students to master microscopic laboratory content.  相似文献   
107.
Game-based learning can have a positive impact on medical education, and virtual worlds have great potential for supporting immersive online games. It is necessary to reinforce current medical students' knowledge about radiological anatomy and radiological signs. To meet this need, the objectives of this study were: to design a competition-based game in the virtual world, Second Life and to analyze the students' perceptions of Second Life and the game, as well as to analyze the medium-term retention of knowledge and the potential impact on the final grades. Ninety out of 197 (45.6%) third-year medical students voluntarily participated in an online game based on self-guided presentations and multiple-choice tests over six 6-day stages. Participants and non-participants were invited to perform an evaluation questionnaire about the experience and a post-exposure knowledge test. Participants rated the experience with mean scores equal to or higher than 8.1 on a 10-point scale, highlighting the professor (9.5 ± 1.1; mean ± SD) and the virtual environment (8.9 ± 1.1). Participants had better results in the post-exposure test than non-participants (59.0 ± 13.5 versus 45.3 ± 11.5; P < 0.001) and a lower percentage of answers left blank (6.7 ± 8.4 versus 13.1 ± 12.9; P = 0.014). Competitive game-based learning within Second Life is an effective and well-accepted means of teaching core radiological anatomy and radiological signs content to medical students. The higher medium-term outcomes obtained by participants may indicate effective learning with the game. Additionally, valuable positive perceptions about the game, the educational contents, and the potential benefit for their education were discovered among non-participants.  相似文献   
108.
Forty anatomy articles were sampled from English Wikipedia and assessed quantitatively and qualitatively. Quantitatively, each article’s edit history was analyzed by Wikipedia X-tools, references and media were counted manually, and two readability indices were used to evaluate article readability. This analysis revealed that each article was updated 8.3 ± 6.8 times per month, and referenced with 33.5 ± 24.3 sources, such as journal articles and textbooks. Each article contained on average 14.0 ± 7.6 media items. The readability indices including: (1) Flesch–Kincaid Grade Level Readability Test and (2) Flesch Reading Ease Readability Formula demonstrated that the articles had low readability and were more appropriate for college students and above. Qualitatively, the sampled articles were evaluated by experts using a modified DISCERN survey. According to the modified DISCERN, 13 articles (32.5%), 24 articles (60%), 3 articles (7.5%), were rated as “good,” “moderate,” and “poor,” respectively. There were positive correlations between the DISCERN score and the number of edits (r = 0.537), number of editors (r = 0.560), and article length (r = 0.536). Strengths reported by the panel included completeness and coverage in 11 articles (27.5%), anatomical details in 10 articles (25%), and clinical details in 5 articles (12.5%). The panel also noted areas which could be improved, such as providing missing information in 28 articles (70%), inaccuracies in 10 articles (25%), and lack or poor use of images in 17 articles (42.5%). In conclusion, this study revealed that many Wikipedia anatomy articles were difficult to read. Each article’s quality was dependent on edit frequency and article length. Learners and students should be cautious when using Wikipedia articles for anatomy education due to these limitations.  相似文献   
109.
受新冠肺炎疫情及采取的对应措施等因素的影响,2022年中国经济增速回落。文章认为从中长期来看,中国的经济增速大致呈下降趋势,整体表现为波浪形,2023年经济发展仍存在较大不确定性。文章利用投入产出技术、统计方法与计量经济学、景气分析法、专家分析法、情景分析法等方法构建了国内生产总值(GDP)增速的系统综合因素预测法,基于对2022年中国经济增长的回顾与分析,结合当前国内外形势,预计2023年中国经济有望平稳运行,增速达到6.0%左右;通过当前经济形势分析,文章进一步提出如下建议:加大宏观政策调节力度,继续实施积极的财政政策和稳健的货币政策,扩消费增就业促投资,着力稳定宏观经济大盘,防范化解重大领域风险,发挥我国在全球产业链上的优势等。  相似文献   
110.
If personalized medicine is the way of the future, and the physician's approach to each patient becomes more individualized and team‐based, so must the professors' approach to the medical student experience. Mayo Medical School has an innovative curriculum designed to respect and enhance the individual interests of its students. A former educator herself, and now a medical student, the author advocates for further creative curriculum design to enhance healthy student attitude learning in medical school. In her personal testimony to the healing power of art and story, she cautions institutions that ignore integrating humanities into their curriculum that their student physicians will build self‐protective barriers without self‐reflection. She argues students must have more avenues to express their emotions during difficult transitions and ethical dilemmas. This commentary describes extracurricular student projects during anatomy, and includes an example of student reflective writing in anatomy. The author suggests that narrative medicine as an emerging discipline would be an effective educational strategy when applied to any aspect of the medical curriculum, and should be considered by more medical schools for further progress in medical education. Anat Sci Educ, 2010. © 2010 American Association of Anatomists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号