首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1871篇
  免费   13篇
  国内免费   11篇
教育   326篇
科学研究   1088篇
各国文化   19篇
体育   11篇
综合类   14篇
信息传播   437篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   571篇
  2018年   456篇
  2017年   181篇
  2016年   23篇
  2015年   16篇
  2014年   61篇
  2013年   47篇
  2012年   60篇
  2011年   57篇
  2010年   39篇
  2009年   37篇
  2008年   41篇
  2007年   42篇
  2006年   36篇
  2005年   50篇
  2004年   30篇
  2003年   37篇
  2002年   24篇
  2001年   16篇
  2000年   13篇
  1999年   4篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
排序方式: 共有1895条查询结果,搜索用时 578 毫秒
981.
This paper presents a novel tracking-protection-recovery switching strategy to solve the thrust tracking and safety protection multi-objective control problem for the aero-engines. The proposed switching control strategy overcomes the contradiction between the tracking performance and the safety requirement. The design procedure is with larger degree of freedom and less conservatism. The proposed switching controller can be designed in three steps. For the tracking stage, the tracking controller is designed only according to the rapidity requirement for the thrust tracking with less consideration of safety. For the protection stage, the protection controller is activated to limit the protected output in the safety region. Because of the properly designed protection controller, it is unnecessary to switch on the protection controller before the protected output reaches the safety boundary. That reduces conservatism and makes the tracking performance improved. For the recovery stage, the recovery controller, as well as the properly designed resetting law, is utilized to guarantee finite number of switches and the resulting asymptotic tracking. Because of the properly designed switch-off condition for the protection controller, the thrust tracking performance gets improved. The protected output is also successfully limited. Finally, a case study for a two-spool turbofan engine is performed to verify the effectiveness of the proposed scheme. It is also indicated that the proposed tracking-protection-recovery switching strategy can improve both safety performance and the tracking transient performance.  相似文献   
982.
Cooperative diversity has been widely used in wireless communication systems since they greatly improves and enhances the quality of service as being virtual antennas without physically placing multiple antennas at the transmitter or the receiver sides. In this paper, we consider the amplify and forward (AF) relay-based communication systems under the influence of Nakagami-m multipath fading channels in both channel links. Several performance metrics are considered in this study, including, the bit error rate (BER), the ergodic channel capacity, and the outage capacity. The obtained expressions are in closed-form and can reduce to the Rayleigh channel model, as a special case. Numerical results are also provided for the obtained expressions and some conclusions are drawn.  相似文献   
983.
In this paper, emphasis has been put on providing the result of a detailed simulation study on the dynamics and efficiency of a vector-controlled voltage source inverter (VSI)-fed surface-mounted permanent magnet synchronous motor (SPMSM) drive; which employs firstly a model-based loss-minimization algorithm (MLMA) and secondly a binary search-based online loss-minimization algorithm (BSOLMA), so as to reduce the total controllable electrical losses without much affecting the dynamic performance of the drive. The steady-state SPMSM model taking into account the core loss has been considered. The dynamic performances of the SPMSM drive employing individually the abovementioned loss minimization algorithms (LMAs) have been compared with that employing conventional zero d-axis current control (ZDCC) through extensive digital computer simulations. The simulation results show that efficiency of the drive enhances with the employment of the LMA.  相似文献   
984.
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.  相似文献   
985.
In this paper, the state estimation problem for discrete-time networked systems with communication constraints and random packet dropouts is considered. The communication constraint is that, at each sampling instant, there is at most one of the various transmission nodes in the networked systems is allowed to access a shared communication channel, and then the received data are transmitted to a remote estimator to perform the estimation task. The channel accessing process of those transmission nodes is determined by a finite-state discrete-time Markov chain, and random packet dropouts in remote data transmission are modeled by a Bernoulli distributed white sequence. Using Bayes’ rule and some results developed in this study, two state estimation algorithms are proposed in the sense of minimum mean-square error. The first algorithm is optimal, which can exactly compute the minimum mean-square error estimate of system state. The second algorithm is a suboptimal algorithm obtained under a lot of Gaussian hypotheses. The proposed suboptimal algorithm is recursive and has time-independent complexity. Computer simulations are carried out to illustrate the performance of the proposed algorithms.  相似文献   
986.
This paper presents a Finite Spectrum Assignment (FSA) with a generalized feedforward control for Linear Time-Invariant (LTI) systems with input delay and bounded unmeasured disturbances. A novel two-layer feedforward strategy is proposed in order to deal with matched and unmatched disturbances. The proposed control law is based on a filtered disturbance estimator and a generalized feedforward compensation which can be applied to any Artstein based predictor. An optimization design procedure is presented to improve disturbance attenuation properties in the presence of band-limited disturbances. The conditions to achieve disturbance rejection are also shown to deal with deterministic disturbance models. Furthermore, the proposed solution can be used to define either continuous-time or discrete-time control algorithms. Two case studies are presented to illustrate the benefits of the new approach.  相似文献   
987.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   
988.
This paper is concerned with reliable H?control for saturated linear Markov jump systems with uncertain transition rates and asynchronous jumped actuator failure. The actuator failures are assumed to occur randomly under the Markov process with a different jumping mode from the system jumping mode. In considering the mixed-mode-dependent state feedback controller, both H stochastic stability analysis for closed-loop system with completely accessible transition rates and uncertain transition rates are investigated. Moreover, based on the obtained stability conditions, the H?control problems are investigated, and the controller gains can be obtained by solving a convex optimization problem with minimizing H performance as objective and linear matrix inequalities (LMIs) as constraints. The problem of designing state feedback controllers such that the estimate of the domain of attraction is enlarged is also formulated and solved as an optimization problem with LMI constraints. Simulation results are presented to illustrate the effectiveness of the proposed results.  相似文献   
989.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   
990.
In this paper, a novel control strategy is proposed for asymptotically stabilizing chained nonholonomic systems with input delay. Firstly, by using the input-state-scaling technique and the static gain control method, the stabilization control problem of such systems is transformed into designing two gain parameters to stabilize a class of generalized feedback systems with state delay. Then, based on the Lyapunov–Krasovskii theorem, the stability analysis of the closed-loop systems is achieved by the appropriate selection of the gain parameters, and the state and output feedback controllers are constructed simultaneously. An illustrative example is also provided to demonstrate the effectiveness of the proposed strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号