首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
教育   5篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 19 毫秒
1
1.
Carbon fiber reinforced copper matrix composite is anewtype of material that can be used in an unlubricatedfriction pair because it has a good self-lubricating perfor-mance in dry sliding against the steel[1 ,2].The wear char-acteristics of composites int…  相似文献   
2.
Aiming at the surface integrity of titanium alloy Ti-6Al-4V in high speed side milling, a series of side mill- ing tests were carried out with uncoated carbide milling cutter at various milling speeds. Surface roughness, residual stress, subsurface microstructure and microhardness variations were investigated. The surface roughness measurement results present that the milling speed from 80 to 120 m/min fails to produce better and more stable roughness values compared with the result obtained from 320 to 380 m/min. The residual stresses in the feed direction and axial depth of cut direction are in similar trends for the two milling speed levels mentioned above. Moreover, the residual stress pro- duced at 320 to 380 m/min is lower and more stable than that at 80 to 120 m/min. The microstructure analysis shows that the volume of β phase in the near surface becomes smaller and the deformation of β phase in the near surface be- comes obvious with the increase of the milling speed. Subsurface microhardness variation was observed down to 200 μm below the machined surface at 80 to 120 m/min and down to 160 μm at 320 to 380 m/min. It is concluded that better surface integrity and higher material removal rate can be obtained at 320 to 380 m/min than at 80 to 120 m/min.  相似文献   
3.
This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.  相似文献   
4.
A data acquisition system based on LabVlEW is designed and implemented, and electrodischarge(ED) fine truing of metal-bonded fine-grain diamond wheel based on real-time monitoring is researched. Real-time monitoring not only makes efficient impulse specification of ED truing easily obtained, but also is good for timely identifying no-load, avoiding short circuit and arc discharge phenomena and then for obtaining normal machining state. ED fine truing of the fine-grain wheel includes two steps: rough truing for high efficiency and fine truing for high precision. Final ED truing precision and efficiency not only depend on electric process specification, but also is concerned with electrode shape, insulated performance of operating fluid and vertical feed quantity value and frequency. Experiments indicate that ED fine truing based on real-time monitoring can improve the truing precision and efficiency. Average machining efficiency of W10 wheel is about 0.95μm/min; the final run-out by ED truing is less than 2μm.  相似文献   
5.
In this work, the orthogonal cutting experiments on Ti-6Al-4V alloy were conducted at different cutting speeds(10—160 m/min)and feed rates(20—160 μm/rev). The tool-chip contact length was measured by the track of tool rake face; meanwhile, the chip morphology caused by the localized and overall chip deformation was characterized by the degree of segmentation and the chip compression ratio, respectively. These parameters were analyzed and calculated according to the segmented chip morphology. In addition, three modified models considering the overall chip deformation and the localized deformation of adiabatic shear band were proposed, and the constants of the models were calculated by the genetic algorithm optimization. Considering the overall and localized chip deformation, the value and variation trend of the tool-contact length predicted by these three models agreed well with the experimental results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号