首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
教育   1篇
体育   11篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
This paper has two main objectives. First, it presents the new relationships between the State (the Ministry of the University) and each university in Italy, and the evaluation system established in 1996 and revised by a recent law passed in October 1999. Second, it focuses on the characteristics of the evaluation system which has to be implemented, in order to verify the universities programmes, as well as their results in terms of efficiency, effectiveness and quality. Particular attention is devoted to the system of indicators to be used for thee valuation and for the allocation of specific funds in terms of incentives, and to their possible effects on the decisions of the universities' management. Finally, appropriate statistical methods to analyse the system of indicators considered are highlighted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Reproducibility of frequency content from surface electromyography (sEMG) signals has not been assessed and it is unknown if incremental load testing design could affect sEMG in cycling. The goals of this study were to assess the reproducibility of measures from sEMG frequency content between sessions and to compare these frequency components between a ramp and a step incremental cycling test. Eighteen cyclists performed four incremental load cycling tests to exhaustion. Two tests were performed using a step increment (load started at 100 W for 3 min followed by increments of 30 W every 3 min) and two were performed using a ramp increment (load started at 100 W for 1 min followed by increments of 30 W·min?1). sEMG was monitored bilaterally for the rectus femoris and vastus lateralis throughout the tests and converted into overall activation (whole signal bandwidth), high- and low-frequency contents. The reproducibility of the frequency content ranged from none to strong (ICC = 0.07–0.90). Vastus lateralis activation was larger at the step compared to the ramp test (P < 0.01), without differences for rectus femoris (P = 0.22–0.91) and for the high-frequency (P = 0.28–0.95) and low-frequency contents (P = 0.13–0.94). sEMG from vastus lateralis and rectus femoris presented none to strong reproducibility. Vastus lateralis is more activated in step test design.  相似文献   
3.
The aims of this study were: (i) to determine kinematic, kinetic, and electromyographic characteristics of Junzuki karate punch in professional karate athletes; (ii) to identify biomechanical parameters that correlate with punch force and lead to a higher punching performance; (iii) to verify the presence of muscle co-activation in the upper limb, trunk, and lower limb muscles. Data were collected from nine experienced karatekas from the Accademia Italiana Karate e Arti Marziali during the execution of the specific punch. Mean punch forces (181.2?N) delivered to the target, the range of motion of both right and left knees (1.13 and 0.82?rad) and right elbow (1.49?rad) joints, and the angles at impact (knee: 0.81 and 0.91?rad; elbow: 1.19?rad) in the sagittal plane were computed. Furthermore, the trunk rotational angular acceleration (63.1?rad?s?2), force related to the lower limbs (550.2 and 425.1?N), and co-activation index for the upper limb (36.1% and 34.7%), trunk (24.5% and 16%), and lower limbs (16.0% and 16.1%) muscles were evaluated bilaterally. Significant positive correlations were found between the punch force and both right and left knee flexion at the instant of impact and right and left leg force. Significant negative correlation was found between the punch force and maximum trunk angular acceleration. Significant differences (p?=?.03) in the co-activation index among the upper limb, trunk, and lower limbs muscles highlighted a rostro-caudal gradient on both body sides. This research could be of use to performers and coaches when considering training preparations.  相似文献   
4.
Although the link between sagittal plane motion and exercise intensity has been highlighted, no study assessed if different workloads lead to changes in three-dimensional cycling kinematics. This study compared three-dimensional joint and segment kinematics between competitive and recreational road cyclists across different workloads. Twenty-four road male cyclists (12 competitive and 12 recreational) underwent an incremental workload test to determine aerobic peak power output. In a following session, cyclists performed four trials at sub-maximal workloads (65, 75, 85 and 95% of their aerobic peak power output) at 90?rpm of pedalling cadence. Mean hip adduction, thigh rotation, shank rotation, pelvis inclination (latero-lateral and anterior–posterior), spine inclination and rotation were computed at the power section of the crank cycle (12 o'clock to 6 o'clock crank positions) using three-dimensional kinematics. Greater lateral spine inclination (p?p?p?相似文献   
5.
Kinetics and kinematics analysis of incremental cycling to exhaustion   总被引:1,自引:0,他引:1  
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5-8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   
6.
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5–8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   
7.
Limited evidence showed that higher workload increases knee forces without effects from changes in pedalling cadence. This study assessed the effects of workload and cadence on patellofemoral and tibiofemoral joint forces using a new model. Right pedal force and lower limb joint kinematics were acquired for 12 competitive cyclists at two levels of workload (maximal and second ventilatory threshold) at 90 and 70 rpm of pedalling cadence. The maximal workload showed 18% larger peak patellofemoral compressive force PFC (large effect size, ES) than the second ventilatory threshold workload (90 rpm). In the meantime, the 90-rpm second ventilatory threshold was followed by a 29% smaller PFC force (large ES) than the 70-rpm condition. Normal and anterior tibiofemoral compressive forces were not largely affected by changes in workload or pedalling cadence. Compared to those of previous studies, knee forces normalized by workload were larger for patellofemoral (mean = 19 N/J; difference to other studies = 20–45%), tibiofemoral compressive (7.4 N/J; 20–572%), and tibiofemoral anterior (0.5 N/J; 60–200%) forces. Differences in model design and testing conditions (such as workload and pedalling cadence) may affect prediction of knee joint forces.  相似文献   
8.
ABSTRACT

Sprint cycling performance depends upon the balance between muscle and drag forces. This study assessed the influence of upper body position on muscle forces and aerodynamics during seated sprint cycling. Thirteen competitive cyclists attended two sessions. The first session was used to determine handlebar positions to achieve pre-determined hip flexion angles (70–110° in 10° increments) using dynamic bicycle fitting. In the second session, full body kinematics and pedal forces were recorded throughout 2x6-s seated sprints at the pre-determined handlebar positions, and frontal plane images were used to determine the projected frontal area. Leg work, joint work, muscle forces and frontal area were compared at three upper body positions, being optimum (maximum leg work), optimal+10° and optimal-10° of hip flexion. Larger hip (p = 0.01–0.02) and reduced knee (p = 0.02–0.03) contribution to leg work were observed at the optimal+10° position without changes at the ankle joint (p = 0.39). No differences were observed in peak muscle forces across the three body positions (p = 0.06–0.48). Frontal area was reduced at optimum+10° of hip flexion when compared to optimum (p = 0.02) and optimum-10° (p < 0.01). These findings suggest that large changes in upper body position can influence aerodynamics and alter contributions from the knee and hip joints, without influencing peak muscle forces.  相似文献   
9.
ABSTRACT

Previous studies have been limited to describe asymmetries during pedalling and suggest possible repercussion on performance and/or injury risks. However, few studies have presented strategies to mitigate asymmetries. The purpose of this study was to assess the effectiveness of a pedalling retraining intervention to reduce bilateral pedal force asymmetries. Twenty cyclists were assessed and 10 enrolled in a pedalling retraining method receiving visual and verbal feedback of pedal forces. The asymmetry index was computed for comparison of bilateral peak pedal forces and used during retraining (12 trials at 70% of peak power). Significantly larger asymmetry was observed for asymmetrical cyclists at the first three trials (P < 0.01 and ES = 1.39), which was reduced when post-retraining was compared to measures from symmetrical cyclists (P = 0.69 and ES = 0.18). Cyclists with larger asymmetry (>20%) in bilateral pedal forces reduce their asymmetries using sessions of pedalling retraining and achieve asymmetry indices similar to symmetrical cyclists.  相似文献   
10.
The purpose of this study was to investigate asymmetry of muscle activation in participants with different levels of experience and performance with cycling. Two separate experiments were conducted, one with nine cyclists and one with nine non-cyclists. The experiments involved incremental maximal and sub-maximal constant load cycling tests. Bilateral surface electromyography (EMG) and gross and net muscle efficiency were assessed. Analyses of variance in mixed linear models and t-tests were conducted. The cyclists in Experiment 1 presented higher gross efficiency (P < 0.05), whereas net efficiency did not differ between the two experiments (21.3 ± 1.4% and 19.8 ± 1.0% for cyclists and non-cyclists, respectively). The electrical muscle activity increased significantly with exercise intensity regardless of leg preference in both experiments. The coefficient of variation of EMG indicated main effects of leg in both experiments. The non-preferred leg of non-cyclists (Experiment 2) presented statistically higher variability of muscle activity in the gastrocnemius medialis and vastus lateralis. Our findings suggest similar electrical muscle activity between legs in both cyclists and non-cyclists regardless of exercise intensity. However, EMG variability was asymmetric and appears to be strongly influenced by exercise intensity for cyclists and non-cyclists, especially during sub-maximal intensity. Neural factors per se do not seem to fully explain previous reports of pedalling asymmetries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号