首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
教育   3篇
  2018年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Background: For the past decade, science educators have been exploring the use of Socio-scientific Issues (SSI) as contexts for science teaching and learning, and research indicates that doing so can support significant learning gains. However, research related to how teachers take up the practice of SSI-based instruction is far more limited, due in part to a lack of tools for use in this kind of research.

Purpose: The focus of this research is development and testing of a new classroom observation protocol specifically designed for SSI-based instructional contexts.

Design and methods: Development of this SSI-Observation Protocol (SSI-OP) took place in four distinct phases: review of existing protocols and SSI-based instruction frameworks, writing and revision of protocol items, initial testing of the draft protocol, and soliciting feedback from SSI experts.

Sample: Following the four stages of SSI-OP development, we progressed to a series of field tests. The field tests were conducted with three different samples. The first sample was an experienced (10 + years) high school biology teacher and one of her honors biology classes. The second sample consisted of seven Turkish Pre-service Science Teachers (PST) participating in a science methods course. The third sample included two Thai PST from a field experience course embedded within a teacher education program.

Results: The final version of the protocol addressed five dimensions of SSI-based instructional activities: focus of instruction, teaching moves, role of teacher, role of students, and classroom environment.

Conclusions: The SSI-OP could be used in a variety of ways for research including documentation of current practices, impacts of professional development and/or curricula on teaching practices, and changes in teaching over time. We offer the SSI-OP as a new tool with the potential to contribute to science teacher education and research that may advance the teaching and learning of science through SSI.  相似文献   

2.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   
3.
The aim of this study was to investigate the effectiveness of instruction supplemented by conceptual change texts (CCTs) over traditional instruction on students’ understanding of electrochemical (galvanic and electrolytic) cell concepts. The participants of the study consisted of 64 students from the two classes of a high school located in Turkey. Classes were randomly assigned to experimental group, which was exposed to CCTs as a supplementary material, and to control group, which was exposed to traditional instruction. A 23-item multiple-choice test was developed assess students’ conceptual understanding of electrochemical cells. This test was administered to both groups before and after the instruction. The results of ANCOVA indicated that students who were instructed by using CCTs had better conceptual understanding of electrochemical cells than those experiencing traditional instruction when their prior electrochemical cell concepts understanding was statistically controlled. The findings of this study suggest that CCTs can be used as a cost- and resource-effective supplement to classroom instruction to promote students’ understanding science concepts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号