首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.  相似文献   
2.
In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due to dynamic loading is the main reason for the observed damages, attention is focused on the bearing capacity for dynamic loading governed by impact, because it differs from the static loading. In this study, from the viewpoint of durability, experimental studies for dynamic behavior were conducted for aluminium alloy expansion joints with perforated dowels. The validity of the perforated dowels against traffic impact loading was confirmed by both experimental and numerical studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号