首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   1篇
体育   1篇
  2018年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This article is a result of the analysis of student-level enrollment records from twenty-one research universities in the United States, and it contributes to a more robust understanding of timely completion of STEM doctorates by underrepresented minority students. Using multivariate logit regression models, findings indicated that Hispanic/Latino and students from other underrepresented groups complete at higher rates than do their Black/African American counterparts. Findings also indicated that prior master’s degrees and institutional participation in doctoral completion programs positively correlate with STEM doctoral completion. We conclude by offering insights and recommendations for graduate schools about how to increase the STEM doctoral attainment rate of students from underrepresented groups.  相似文献   
2.
Currently, it is not possible to prescribe isometric exercise at an intensity that corresponds to given heart rates or systolic blood pressures. This might be useful in optimizing the effects of isometric exercise training. Therefore, the aim of this study was to explore the relationships between isometric exercise intensity and both heart rate and systolic blood pressure during repeated incremental isometric exercise tests. Fifteen participants performed seated isometric double-leg knee extension, during which maximum voluntary contraction (MVC) was assessed, using an isokinetic dynamometer. From this, a corresponding peak electromyographic activity (EMG(peak)) was determined. Subsequently, participants performed two incremental isometric exercise tests (at least 48 h apart) at 10, 15, 20, 25, and 30% EMG(peak), during which steady-state heart rate and systolic blood pressure were recorded. In all participants, there were linear relationships between %EMG(peak) and heart rate (r at least 0.91; P < 0.05) and between %EMG(peak) and systolic blood pressure (r at least 0.92; P < 0.05). Also, when repeated tests were compared, there were no differences in the slopes (P > 0.50) or elevations (P > 0.10) for either of the relationships. Therefore, these linear relationships could be used to identify isometric exercise training intensities that correspond to precise heart rates or systolic blood pressures. Training performed in this way might provide greater insight into the underlying mechanisms for the cardiovascular adaptations that are known to occur as a result.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号