首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
体育   4篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Carnosine was originally discovered in skeletal muscle, where it exists in larger amounts than in other tissues. The majority of research into the physiological roles of carnosine have been conducted on skeletal muscle. Given this and the potential for muscle carnosine content to be increased with supplementation, there is now a large body of research examining the ergogenic effects (or otherwise) of carnosine. More recent research, however, points towards a potential for carnosine to exert a wider range of physiological effects in other tissues, including the brain, heart, pancreas, kidney and cancer cells. Taken together, this is suggestive of a potential for carnosine to have therapeutic benefits in health and disease, although this is by no means without complication. Herein, we will provide a review of the current literature relating to the potential therapeutic effects of carnosine in health and disease.  相似文献   
2.
The purpose of this study was to verify the association between ACTN3 polymorphism and physiological parameters related to endurance performance. A total of 150 healthy male volunteers performed a maximal incremental running test to determine the speeds corresponding to ventilatory threshold (VT) and respiratory compensation point (RCP). Participants were genotyped and divided into terciles based on the analysed variables. Genotype frequencies were compared through χ2 test between lower and higher terciles, with the lowest or highest values of each analysed variable. ACTN3 XX genotype was over-represented in higher tercile for VT and RCP. Odds ratio also showed significantly higher chances of XX individuals to be in higher tercile compared to RR (7.3) and RR + RX (3.5) for VT and compared to RR genotype (8.1) and RR + RX (3.4) for RCP. Thus, XX individuals could attain the VT and RCP at higher speeds, suggesting that they are able to sustain higher running speeds in lower exercise intensity domains. It could result in higher lipid acids oxidation, saving muscle glycogen and delaying the fatigue during prolonged exercises, which could be the advantage mechanism of this genotype to endurance performance.  相似文献   
3.
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 ± 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 ± 4.0%; upper-body peak and mean power, 6.8 ± 0.5 and 4.7 ± 0.4 W · kg(-1), respectively; 1-RM bench press, 99.1 ± 11.7 kg; peak oxygen uptake, 44.3 ± 5.8 mL · kg(-1) · min(-1); total energy intake, 42.8 ± 8.6 kcal · kg(-1); protein, carbohydrate, and fat intakes, 1.9 ± 0.1, 5.0 ± 1.5, and 1.7 ± 0.4 g · kg(-1), respectively; mean heart rate, 146 ± 11 beats · min(-1); plasma lactate, 5.7 ± 3.8 mmol · L(-1) at half-time and 4.6 ± 2.2 mmol · L(-1) at the end of the match; effort time (relative to total match time), 93.1 ± 3.0%; number of sprints, 9.6 ± 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.  相似文献   
4.
Purpose: To investigate the effect of sodium bicarbonate (NaHCO3) on performance and estimated energy system contribution during simulated taekwondo combat. Methods: Nine taekwondo athletes completed two experimental sessions separated by at least 48?h. Athletes consumed 300?mg/kg body mass of NaHCO3 or placebo (CaCO3) 90?min before the combat simulation (three rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration [La?] and rating of perceived exertion (RPE) were measured before and after each round, whereas heart rate (HR) and the estimated contribution of the oxidative (WOXI), ATP (adenosine triphosphate)-phosphocreatine (PCr) (WPCR), and glycolytic (W[ La? ]) systems were calculated during the combat simulation. Results: [La?] increased significantly after NaHCO3 ingestion, when compared with the placebo condition (+14%, P?=?0.04, d?=?3.70). NaHCO3 ingestion resulted in greater estimated glycolytic energy contribution in the first round when compared with the placebo condition (+31%, P?=?0.01, d?=?3.48). Total attack time was significantly greater after NaHCO3 when compared with placebo (+13%, P?=?0.05, d?=?1.15). WOXI, WPCR, VO2, HR and RPE were not different between conditions (P?>?0.05). Conclusion: NaHCO3 ingestion was able to increase the contribution of glycolytic metabolism and, therefore, improve performance during simulated taekwondo combat.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号