首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
科学研究   1篇
体育   3篇
  2018年   1篇
  2017年   1篇
  2011年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.
The purpose of this study was to evaluate the effects of whole-body vibration (WBV) on the muscle recruitment of selected upper and lower body muscles during the baseball swing. Participants were recreationally trained males (n = 16, 22 +/- 2 years, 181.4 +/- 7.4 cm, 84.7 +/- 9.0 kg), with previous baseball experience. Subjects participated in three randomized sessions on separate days, consisting of three sets of five swings offa hitting tee. Exercises (upper and lower body dynamic and static movements) with or without WBVexposure were performed between swing sets. During each swing, the gastrocnemius, biceps femoris, gluteus maximus, pectoralis major, latissimus dorsi, and triceps brachii were evaluated for electromyographic (EMG) activity. EMG values were normalized to EMG measured during maximal voluntary isometric contraction. Statistical analysis revealed no significant differences in EMG activity across the three treatments. In addition, the results displayed a specific muscle recruitment order during the swing, starting with the lower body followed by the upper body muscles. This study was the first to report the recruitment order during the baseball swing. Although acute exposure to WBV did not significantly alter the muscle recruitment, these results may prove useful for practitioners looking to enhance baseball swing performance.  相似文献   
2.
The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.  相似文献   
3.
4.
This study aimed to provide a comprehensive strength-based physiological profile of women’s NCAA Division I basketball and gymnastic athletes; and to make sport-specific comparisons for various strength characteristics of the knee flexor and extensor muscles. A focus on antagonist muscle balance (hamstrings-to-quadriceps ratios, H:Q) was used to elucidate vulnerabilities in these at-risk female athletes. Fourteen NCAA Division I women’s basketball and 13 gymnastics athletes performed strength testing of the knee extensors and flexors. Outcome measures included absolute and relative (body mass normalised) peak torque (PT), rate of torque development at 50, 100, 200 ms (RTD50 etc.) and H:Q ratios of all variables. The basketball athletes had greater absolute strength for all variables except for isokinetic PT at 240°s?1 and isometric RTD50 for the knee extensors. Gymnasts showed ~20% weaker body mass relative concentric PT for the knee flexors at 60 and 120°·s?1, and decreased conventional H:Q ratios at 60 and 240°·s?1 (~15%). These findings suggest that collegiate level gymnastics athletes may be prone to increased ACL injury risk due to deficient knee flexor strength and H:Q strength imbalance. Coaches may use these findings when implementing injury prevention screening and/or for individualised strength training programming centered around an athletes strength-related deficits.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号