首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   1篇
体育   1篇
  2017年   1篇
  1983年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Recumbent bicycles (RB) are high performance, human-powered vehicles. In comparison to normal/upright bicycles (NB) the RB may allow individuals to reach higher speeds due to aerodynamic advantages. The purpose of this investigation was to compare the non-aerodynamic factors that may potentially influence the performance of the two bicycles. 3D body centre of mass (BCoM) trajectory, its symmetries, and the components of the total mechanical work necessary to sustain cycling were assessed through 3D kinematics and computer simulations. Data collected at 50, 70, 90 110 rpm during stationary cycling were used to drive musculoskeletal modelling simulation and estimate muscle-tendon length. Results demonstrated that BCoM trajectory, confined in a 15-mm side cube, changed its orientation, maintaining a similar pattern across all cadences in both bicycles. RB displayed a reduced additional mechanical external power (16.1 ± 9.7 W on RB vs. 20.3 ± 8.8 W on NB), a greater symmetry on the progression axis, and no differences in the internal mechanical power compared to NB. Simulated muscle activity revealed small significant differences for only selected muscles. On the RB, quadriceps and gluteus demonstrated greater shortening, while biceps femoris, iliacus, and psoas exhibited greater stretch; however, aerodynamics still remains the principal benefit.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号