首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
体育   3篇
  2013年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Accurate measurement of head volume is indispensable for precise assessments of body composition determined by hydrostatic weighing without head submersion. The purpose of this study was to establish a prediction equation for head volume measured by the immersion method from multiple regression analysis using head parameters (head circumference, head length, head breadth, neck girth and head thickness) as independent variables. The participants were 106 Japanese young adults (55 males and 51 females) aged 17-27 years. Intra-class correlation coefficients (ICCs) for each head parameter and head volume in males and females were very high (ICC = 0.993-0.999, 0.992-0.998). Head circumference was closely related to head volume measured by the immersion method (r = 0.719, 0.861, P < 0.05), and was the most important parameter for the prediction equation in both sexes. Head breadth was related poorly (r = 0.475, 0.500, P < 0.05) and showed a small individual difference. It was, therefore, excluded from the independent variables. The prediction equation for males was predicted head volume = 122.10X1 + 106.19X3 + 37.16X4 - 89.46X5 - 4754.93, R = 0.909, SEE = 121.75 ml, and that for females was predicted head volume = 213.83X1 + 45.24X3 + 36.85X4 - 74.34X5 - 8912.43, R = 0.913, SEE = 136.26 ml (where X1 = head circumference, X3 = head length, X4 = neck girth, X5 = head thickness, and SEE = standard error of the estimate). The limits of agreement for predicted and measured head volume were -234.5 to 234.1 ml for males, and -261.0 to 261.0 ml for females. In cross-validation groups of both sexes, there were no significant differences between measured head volume and predicted head volume. The correlation coefficients between measured head volume and predicted head volume in males and females were 0.894 and 0.908, respectively. The predicted head volume from prediction equations was considered to have high reliability and validity.  相似文献   
2.
There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P < 0.05). The limits of agreement for residual volumes in both conditions using Bland-Altman plots were -0.430 to 0.508 litres. This range was larger than the trial-to-trial error of residual volume on land (-0.260 to 0.304 litres). Moreover, the relationship between percent body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P < 0.0001), and the errors were approximately -6 to 4% (limits of agreement for percent body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.  相似文献   
3.
Accurate measurement of head volume is indispensable for precise assessments of body composition determined by hydrostatic weighing without head submersion. The purpose of this study was to establish a prediction equation for head volume measured by the immersion method from multiple regression analysis using head parameters (head circumference, head length, head breadth, neck girth and head thickness) as independent variables. The participants were 106 Japanese young adults (55 males and 51 females) aged 17?–?27 years. Intra-class correlation coefficients (ICCs) for each head parameter and head volume in males and females were very high (ICC = 0.993?–?0.999, 0.992?–?0.998). Head circumference was closely related to head volume measured by the immersion method (r = 0.719, 0.861, P <?0.05), and was the most important parameter for the prediction equation in both sexes. Head breadth was related poorly (r = 0.475, 0.500, P <?0.05) and showed a small individual difference. It was, therefore, excluded from the independent variables. The prediction equation for males was predicted head volume = 122.10X 1 + 106.19X 3 + 37.16X 4 - 89.46X 5 - 4754.93, R = 0.909, SEE = 121.75?ml, and that for females was predicted head volume = 213.83X 1 + 45.24X 3 + 36.85X 4 - 74.34X 5 - 8912.43, R = 0.913, SEE = 136.26?ml (where X 1 = head circumference, X 3 = head length, X 4 = neck girth, X 5 = head thickness, and SEE = standard error of the estimate). The limits of agreement for predicted and measured head volume were –?234.5 to 234.1?ml for males, and ??261.0 to 261.0?ml for females. In cross-validation groups of both sexes, there were no significant differences between measured head volume and predicted head volume. The correlation coefficients between measured head volume and predicted head volume in males and females were 0.894 and 0.908, respectively. The predicted head volume from prediction equations was considered to have high reliability and validity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号