首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
教育   16篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.

The aim of the study was to investigate students’ views of model evaluation through the lens of personal epistemology. We developed an integrated analytical framework by combining a developmental framework, including absolutist, multiplist, and evaluatist, with a multi-dimensional framework, including limits of knowing, certainty of knowing, and criteria of knowing. Furthermore, we examined the potential influence of the question contexts and the students’ grade levels. A total of 188 secondary school students were surveyed. Students answered two sets of model evaluation questions based on two scientific contexts. After reading the information about the two models, the students had to choose from three epistemic assumptions and then provide written justifications explaining their choice of assumptions. Quantitative and qualitative analyses were conducted for the multiple-choice questions and the written responses. In both contexts there were higher percentages of 11th-grade students choosing the evaluatist assumptions than the eighth-grade students. For students choosing multiplist and evaluatist assumptions, the 11th-grade students were more likely than the eighth-grade students to think in terms of pragmatic and evidential criteria as the criteria of knowing. Different contexts of the questions evoked different views of model evaluation particularly regarding the limits of knowing. Four additional categories of epistemic levels also emerged from the data. This study provides a new framework for understanding students’ thinking about model evaluation. Implications and suggestions for future research are provided.

  相似文献   
2.
The aim of this study was to examine the potential impact of the representational characteristics of models and students’ educational levels on students’ views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the nature of models, the nature of modeling, and the purpose of models. The three scales of representational characteristics included modality, dimensionality, and dynamics. A total of 102 eighth graders and 87 eleventh graders were surveyed. Both quantitative data and written responses were analyzed. The influence of the representational characteristics seemed to be more salient on the nature of models and the purpose of models. Some interactions between the educational levels and the representational characteristics showed that the high school students were more likely to recognize textual representations and pictorial representations as models, while also being more likely to appreciate the differences between 2D and 3D models. However, some other differences between educational levels did not necessarily suggest that the high school students attained more sophisticated VSMM. For instance, in considering what information should be included in a model, students’ attention to particular affordances of the representation can lead to a more naive view of modeling. Implications for developing future questionnaires and for teaching modeling are suggested in this study.  相似文献   
3.
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students?? engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.  相似文献   
4.
In order to promote scientific inquiry in secondary schooling in Taiwan, the study developed a computer-based inquiry curriculum (including structured and guided inquiry units) and investigated how the curriculum influenced students’ science learning. The curriculum was implemented in 5 junior secondary schools in the context of a weeklong summer science course with 117 students. We first used a multi-level assessment approach to evaluate the students’ learning outcomes with the curriculum. Then, a path analysis approach was adopted for investigating at different assessment levels how the curriculum as a whole and how different types of inquiry units affected the students’ development of conceptual understandings and inquiry abilities. The results showed that the curriculum was effective in enhancing the students’ conceptual knowledge and inquiry abilities in the contexts of the six scientific topics. After the curriculum, they were able to construct interconnected scientific knowledge. The path diagrams suggested that, due to different instructional designs, the structured and guided inquiry units appeared to support the students’ learning of the topics in different ways. More importantly, they demonstrated graphically how the learning of content knowledge and inquiry ability mutually influenced one another and were reciprocally developed in a computer-based inquiry learning environment.  相似文献   
5.
6.
The purpose of this study was to investigate the effects of representation sequences and spatial ability on students’ scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing static representations and then dynamic ones), and DS group (i.e., viewing dynamic representations and then static ones). Among them, 16 students (8 from each group) with different levels of prior knowledge and spatial ability were interviewed. Data sources included a spatial ability test, pre- and post-tests of scientific understandings (involving factual, conceptual, and spatial knowledge), and semi-structured interviews. The statistical results indicated that the SD sequence helped students gain significantly more factual knowledge. The significant interaction effects further suggested that while the representation sequences had no effect on students with low spatial ability, high spatial ability students in the SD group outperformed than their counterparts in DS group on the items of the conceptual and spatial knowledge. Additionally, the analysis of interviews indicated that the representation sequences could affect the foci of students’ explanations and shape their perceptions about the representations. The results suggested interplays among representation sequences, spatial ability, and students’ understandings, and provided insight into the design and arrangement of multiple representations for science learning.  相似文献   
7.
The purpose of this study is to understand in what ways a technology-enhanced learning (TEL) environment supports learning about the causes of the seasons. The environment was designed to engage students in five cognitive phases: Contextualisation, Sense making, Exploration, Modeling, and Application. Seventy-five high school students participated in this study and multiple sources of data were collected to investigate students’ conceptual understandings and the interactions between the design of the environment and students’ alternative conceptions. The findings show that the number of alternative conceptions held by students were reduced except for the incorrect concepts of “the length of sunshine” and “the distance between the sun and the earth.” The percentage of partial explanations held by students was also reduced from 60.5 to 55.3% and the percentage of students holding complete scientific explanations after using Lesson Seasons rose from 2.6 to 15.8%. While some students succeeded in modeling their science concepts closely to the expert’s concepts, some failed to do so after the invention. The unsuccessful students could not remediate their alternative conceptions without explicit guidance and scaffolding. Future research can then be focused on understanding how to provide proper scaffoldings for removing some alternative concepts which are highly resistant to change.
Fu-Kwun HwangEmail:
  相似文献   
8.
There is a distance between the power that whole class dialogic discussions (WCDD) may offer to the science class and their use in practice. Teachers’ attitudes toward WCDD are part of the problem. The aims of this study were twofold: (a) to examine Taiwanese physics teachers’ attitudes toward WCDD by considering cultural perspectives and describe how these attitudes changed as a result of a special workshop designed for this purpose, and (b) to report on how these attitudes should be taken into account in designing such workshops in the future. Nine experienced physics teachers participated in the WCDD workshop. The workshop was based on the WCDD model developed by Eshach (2010). Inductive analyses were performed on interviews with the teachers and their students, which were composed of 36 questions and developed specially for the purpose of this study, yielded the following categories: (1) In-school reasons for opposing WCDD—reasons belonging to school ways/tradition of teaching that may cause barriers to WCDD implementation; (2) External Factors—cultural reasons relating to Taiwanese views concerning education in general, which cause barriers to WCDD implementation; and (3) Cognitive aspect—refers to what teachers know about WCDD. The paper concludes with a discussion on what should be done in order to successfully bring WCDD to the Taiwanese physics class.  相似文献   
9.
10.
The purpose of this study was to develop and validate an online contextualized test for assessing students’ understanding of epistemic knowledge of science. In addition, how students’ understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students’ understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants’ understanding of the epistemic knowledge of science; and (3) students’ interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号