首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2022年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The utility of three-dimensional (3D) printed models for medical education in complex congenital heart disease (CHD) is sparse and limited. The purpose of this study was to evaluate the utility of 3D printed models for medical education in criss-cross hearts covering a wide range of participants with different levels of knowledge and experience, from medical students, clinical fellows up to senior medical personnel. Study participants were enrolled from four dedicated imaging workshops developed between 2016 and 2019. The study design was a non-randomized cross-over study to evaluate 127 participants' level of understanding of the criss-cross heart anatomy. This was evaluated using the scores obtained following teaching with conventional images (echocardiography and magnetic resonance imaging) versus a 3D printed model learning approach. A significant improvement in anatomical knowledge of criss-cross heart anatomy was observed when comparing conventional imaging test scores to 3D printed model tests [76.9% (61.5%–87.8%) vs. 84.6% (76.9%–96.2%), P < 0.001]. The increase in the questionnaire marks was statistically significant across all academic groups (consultants in pediatric cardiology, fellows in pediatric cardiology, and medical students). Ninety-four percent (120) and 95.2% (121) of the participants agreed or strongly agreed, respectively, that 3D models helped them to better understand the medical images. Participants scored their overall satisfaction with the 3D printed models as 9.1 out of 10 points. In complex CHD such as criss-cross hearts, 3D printed replicas improve the understanding of cardiovascular anatomy. They enhanced the teaching experience especially when approaching medical students.  相似文献   
2.
This paper presents mean fatigue lifetime predic- tion of a wire-bond structure model in power electronic module using a failure physics approach that integrates high fidelity modelling and reduced order modelling. Loading current with variable amplitudes is applied to a finite element model of simplified wirebond structures. The resulting accumulated fatigue damage due to random loads is predicted by using reduced order modelling based on failure physics, a cycle counting algorithm, and various nonlinear fatigue damage models widely used in the literature. The reduced order mod- elling approach based on failure physics uses prediction data for the electro-thermo-mechanical behaviour of the wire-bond design of a power module obtained through non-linear transient finite element simulations, in particular for the fatigue life-time of the aluminium wire attached to the silicon chip of the wire in the module. The reduced order models that capture the black box function of the accumulated plastic strain are used in pre- dicting the mean fatigue life time of the wire bond structure under random loads. One of the widely used cycle counting algorithms, rainflow counting algorithm, is used to count cycles of the temperature profile at the specific point of the wire bond structure in a power electronic module. The cycle data from the rainflow algorithm mean life time of the wire bond structure are predicted with various cumulative fatigue models. Non-linear cumulative fatigue models such as damage curve approach (DCA), double linear damage rule (DLDR), and double dam- age curve approach (DDCA), and linear cumulative fatigue damage model such as Palmgren-Miner rule are used to predict the mean fatigue life of the wire bond structure, and the results are compared.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号