首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
教育   6篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 234 毫秒
1
1.
Journal of Science Education and Technology - Learning through games in general and educational escape-rooms in particular requires participants to be creative and critical thinkers, work in...  相似文献   
2.
ABSTRACT

Context-based learning (CBL), promoting students' scientific text comprehension, and fostering metacognitive skills, plays an important role in science education. Our study involves CBL through comprehension and analysis of adapted scientific articles. We developed a module which integrates metacognitive prompts for guiding students to monitor their understanding and improve their scientific text comprehension. We investigated the effect of these metacognitive prompts on scientific text comprehension as part of CBL in chemistry. About 670 high school chemistry students were randomly divided into three groups exposed to high- and low-intensity CBL. One of the high-intensity groups was also exposed to metacognitive prompts. Research tools included pre- and post-questionnaires aimed at measuring students' conceptual chemistry understanding and metacognitive knowledge in the context of reading strategies, before and after exposure to the CBL. Chemistry understanding was reflected by students' ability to identify the main subject of the adapted article and by explaining concepts both textually and visually. We found that high-intensity CBL combined with metacognitive prompts improved students' chemistry understanding of the adapted scientific articles and the ability to regulate their learning. Our study establishes that reading context-based adapted scientific articles advances students' conceptual chemistry understanding. These gains are strongly amplified by domain-specific metacognitive prompts.  相似文献   
3.
4.
Journal of Science Education and Technology - Chemistry curriculum should account for learning in context and understanding chemistry at the macroscopic and microscopic levels: the symbol level and...  相似文献   
5.
In scientific arguments, claims must have meaning that extends beyond the immediate circumstances of an investigation. That is, claims must be generalised in some way. Therefore, teachers facilitating classroom argumentation must be prepared to support students’ efforts to construct or criticise generalised claims. However, widely used argumentation support tools, for instance, the claim-evidence-reasoning (CER) framework, tend not to address generalisation. Accordingly, teachers using these kinds of tools may not be prepared to help their students negotiate issues of generalisation in arguments. We investigated this possibility in a study of professional development activities of 18 middle school teachers using CER. We compared the teachers’ approach to generalisation when using a published version of CER to their approach when using an alternate form of CER that increased support for generalisation. In several different sessions, the teachers: (1) responded to survey questions when using CER, (2) critiqued student arguments, (3) used both CER and alternate CER to construct arguments, and (4) discussed the experience of using CER and alternate CER. When using the standard CER, the teachers did not explicitly attend to generalisation in student arguments or in their own arguments. With alternate CER, the teachers generalised their own arguments, and they acknowledged the need for generalisation in student arguments. We concluded that teachers using frameworks for supporting scientific argumentation could benefit from more explicit support for generalisation than CER provides. More broadly, we concluded that generalisation deserves increased attention as a pedagogical challenge within classroom scientific argumentation.  相似文献   
6.
For an educational reform to succeed, teachers need to adjust their perceptions to the reform’s new curricula and strategies and cope with new content, as well as new teaching and assessment strategies. Developing students’ scientific literacy through context-based chemistry and higher order thinking skills was the framework for establishing a new chemistry curriculum for Israeli high school students. As part of this endeavor, we developed the Taste of Chemistry module, which focuses on context-based chemistry, chemical understanding, and higher order thinking skills. Our research objectives were (a) to identify the challenges and difficulties chemistry teachers faced, as well as the advantages they found, while teaching and assessing the Taste of Chemistry module; and (b) to investigate how they coped with teaching and assessing thinking skills that include analyzing data from graphs and tables, transferring between multiple representations and, transferring between chemistry understanding levels. Research participants included eight teachers who taught the module. Research tools included interviews, classroom observations, teachers-designed students’ assignments, and developers-designed students’ assignments. We documented different challenges teachers had faced while teaching the module and found that the teachers developed different ways of coping with these challenges. Developing teachers’ assessment knowledge (AK) was found to be the highest stage in teachers’ professional growth, building on teachers’ content knowledge (CK), pedagogy knowledge (PK), and pedagogical-content knowledge (PCK). We propose the use of assignments designed by teachers as an instrument for determining their professional growth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号