首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
教育   4篇
  2018年   1篇
  2013年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Advances in data collection have made intensive longitudinal data easier to collect, unlocking potential for methodological innovations to model such data. Dynamic structural equation modeling (DSEM) is one such methodology but recent studies have suggested that its small N performance is poor. This is problematic because small N data are omnipresent in empirical applications due to logistical and financial concerns associated with gathering many measurements on many people. In this paper, we discuss how previous studies considering small samples have focused on Bayesian methods with diffuse priors. The small sample literature has shown that diffuse priors may cause problems because they become unintentionally informative. Instead, we outline how researchers can create weakly informative admissible-range-restricted priors, even in the absence of previous studies. A simulation study shows that metrics like relative bias and non-null detection rates with these admissible-range-restricted priors improve small N properties of DSEM compared to diffuse priors.  相似文献   
2.
Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, structural equation, multilevel, and time-varying effects models. Despite the well-known properties of these analysis areas by themselves, it is unclear how their sample size requirements and recommendations transfer to the DSEM framework. This article presents the results of a simulation study that examines the estimation quality of univariate 2-level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8. Three features are varied in the simulations: complexity of the model, number of subjects, and number of time points per subject. Samples with many subjects and few time points are shown to perform substantially better than samples with few subjects and many time points.  相似文献   
3.
The scientific literature consistently supports a negative relationship between adolescent depression and educational achievement, but we are certainly less sure on the causal determinants for this robust association. In this article we present multivariate data from a longitudinal cohort-sequential study of high school students in Hawai‘i (following McArdle, 2008; McArdle, Johnson, Hishinuma, Miyamoto, & Andrade, 2001). We first describe the full set of data on academic achievements and self-reported depression. We then carry out and present a progression of analyses in an effort to determine the accuracy, size, and direction of the dynamic relationships among depression and academic achievement, including gender and ethnic group differences. We apply 3 recently available forms of longitudinal data analysis: (a) Dealing with incomplete data—We apply these methods to cohort-sequential data with relatively large blocks of data that are incomplete for a variety of reasons (Little & Rubin, 1987; McArdle & Hamagami, 1992). (b) Ordinal measurement models (Muthén & Muthén, 2006)—We use a variety of statistical and psychometric measurement models, including ordinal measurement models, to help clarify the strongest patterns of influence. (c) Dynamic structural equation models (DSEMs; McArdle, 2008). We found the DSEM approach taken here was viable for a large amount of data, the assumption of an invariant metric over time was reasonable for ordinal estimates, and there were very few group differences in dynamic systems. We conclude that our dynamic evidence suggests that depression affects academic achievement, and not the other way around. We further discuss the methodological implications of the study.  相似文献   
4.
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008 McArdle, J. J. and Prindle, J. J. 2008. A latent change score analysis of a randomized clinical trial in reasoning training. Psychology and Aging, 23: 702719. [Crossref], [PubMed], [Web of Science ®] [Google Scholar]). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of approximation (RMSEA) power approximation procedures were used to compare the effects of parameter manipulations and how researchers should interpret findings. The chi-square power of perfect fit calls for at least 270 individuals to detect moderate differences, whereas the RMSEA procedure of close fit seems to require as many as 1,450 participants. It is shown that parameters that provide input into the change score that the transfer leads to affect power versus indirect pathways. A discussion of differences in approximation values and future research directions follows.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号