首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
体育   12篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2013年   5篇
  2012年   1篇
排序方式: 共有12条查询结果,搜索用时 187 毫秒
1.
It has previously been shown that cyclists are unable to maintain a constant power output during cycle time-trials on hilly courses. The purpose of the present study is therefore to quantify these effects of power variation using a mathematical model of cycling performance. A hypothetical cyclist (body mass: 70?kg, bicycle mass: 10?kg) was studied using a mathematical model of cycling, which included the effects of acceleration. Performance was modelled over three hypothetical 40-km courses, comprising repeated 2.5-km sections of uphill and downhill with gradients of 1%, 3%, and 6%, respectively. Amplitude (5–15%) and distance (0.31–20.00?km) of variation were modelled over a range of mean power outputs (200–600?W) and compared to sustaining a constant power. Power variation was typically detrimental to performance; these effects were augmented as the amplitude of variation and severity of gradient increased. Varying power every 1.25?km was most detrimental to performance; at a mean power of 200?W, performance was impaired by 43.90?s (±15% variation, 6% gradient). However at the steepest gradients, the effect of power variation was relatively independent of the distance of variation. In contrast, varying power in parallel with changes in gradient improved performance by 188.89?s (±15% variation, 6% gradient) at 200?W. The present data demonstrate that during hilly time-trials, power variation that does not occur in parallel with changes in gradient is detrimental to performance, especially at steeper gradients. These adverse effects are substantially larger than those previously observed during flat, windless time-trials.  相似文献   
2.
ABSTRACT

Purpose: To study the pacing behavior and performance of novice youth exercisers in a controlled laboratory setting. Method: Ten healthy participants (seven male, three female, 15.8 ± 1.0 years) completed four, 2-km trials on a Velotron cycling ergometer. Visit 1 was a familiarization trial. Visits 2 to 4 involved the following conditions, in randomized order: no opponent (NO), a virtual opponent (starting slow and finishing fast) (OP-SLOWFAST), and a virtual opponent (starting fast and finishing slow) (OP-FASTSLOW). Repeated measurement ANOVAs (p < .05) were used to examine differences in both pacing behavior and also performance related to power output, finishing- and split times, and RPE between the four successive visits and the three conditions. Expected performance outcome was measured using a questionnaire. Results: Power output increased (F3,27 = 5.651, p = .004, η2p = .386) and finishing time decreased (F3,27 = 9.972, p < .001, η2p = .526) between visit 1 and visits 2, 3 and 4. In comparison of the first and second visit, the difference between expected finish time and actual finishing time decreased by 66.2%, regardless of condition. The only significant difference observed in RPE score was reported at the 500 m point, where RPE was higher during visit 1 compared to visits 3 and 4, and during visit 2 compared to visit 4 (p < .05). No differences in pacing behavior, performance, or RPE were found between conditions (p > .05). Conclusion: Performance was improved by an increase in experience after one visit, parallel with the ability to anticipate future workload.  相似文献   
3.
Time-to-exhaustion (TTE) trials are used in a laboratory setting to measure endurance performance. However, there is some concern with their ecological validity compared with time-trials (TT). Consequently, we aimed to compare cycling performance in TTE and TT where the duration of the trials was matched. Seventeen trained male cyclists completed three TTE trials at 80, 100 and 105% of maximal aerobic power (MAP). On a subsequent visit they performed three TT over the same duration as the TTE. Participants were blinded to elapsed time, power output, cadence and heart rate (HR). Average TTE was 865 ± 345 s, 165 ± 98 s and 117 ± 45 s for the 80, 100 and 105% trials respectively. Average power output was higher for TTE (294 ± 44 W) compared to TT (282 ± 43 W) at 80% MAP (P < 0.01), but not at 100 and 105% MAP (P > 0.05). There was no difference in cadence, HR, or RPE for any trial (P > 0.05). Critical power (CP) was also higher when derived from TTE compared to TT (P < 0.01). It is concluded that TTE results in a higher average power output compared to TT at 80% MAP. When determining CP, TTE rather than TT protocols appear superior.  相似文献   
4.
为了探索道次、场地条件和运动水平对速度滑冰女子1000m速度节奏的影响。采用文献资料、访谈和数理统计等研究方法,分析了2012—2013赛季哈尔滨站速度滑冰世界杯和关国速度滑冰世界锦标赛女子1000m前后两次比赛均参加的运动员分段数据,结果认为:(1)速度滑冰女子1000m道次不同造成运动员速度节奏的明显差异,外道速度波动比内道更大;(2)速度滑冰女子l000m场地条件不同,速度节奏存在显著性差异,条件越差的比赛场地,其启动阶段加速节奏越快,600—1000m分段速度节奏越慢;(3)速度滑冰女子1000m高、低水平运动员百分速度节奏存在显著性差异,低水平运动员0—200m启动阶段相对加速节奏更快,600—1000m分段高水平运动员百分速度节奏更快。  相似文献   
5.
The aim of this study is to analyse the influence of performance level, age and gender on pacing during a 100-km ultramarathon. Results of a 100-km race incorporating the World Masters Championships were used to identify differences in relative speeds in each 10-km segment between participants finishing in the first, second, third and fourth quartiles of overall positions (Groups 1, 2, 3 and 4, respectively). Similar analyses were performed between the top and bottom 50% of finishers in each age category, as well as within male and female categories. Pacing varied between athletes achieving different absolute performance levels. Group 1 ran at significantly lower relative speeds than all other groups in the first three 10-km segments (all P < 0.01), and significantly higher relative speeds than Group 4 in the 6th and 10th (both P < 0.01), and Group 2 in the 8th (P = 0.04). Group 4 displayed significantly higher relative speeds than Group 2 and 3 in the first three segments (all P < 0.01). Overall strategies remained consistent across age categories, although a similar phenomenon was observed within each category whereby ‘top’ competitors displayed lower relative speeds than ‘bottom’ competitors in the early stages, but higher relative speeds in the later stages. Females showed lower relative starting speeds and higher finishing speeds than males. ‘Top’ and ‘bottom’ finishing males displayed differing strategies, but this was not the case within females. Although pacing remained consistent across age categories, it differed with level of performance within each, possibly suggesting strategies are anchored on direct competitors. Strategy differs between genders and differs depending on performance level achieved in males but not females.  相似文献   
6.
Generally, swimmers pace themselves using their own judgement and the poolside clock during swimming training, fitness testing protocols or scientific investigation. The Aquapacer? is a new pacing device that can be used to pace the swimming speed or stroke rate of the swimmer. The aims of this study were to determine if breaststroke swimmers could pace accurately during submaximal swimming using a poolside clock (Study 1) and the Aquapacer? (Study 2), at swimming speeds at, just above and just below maximal 200 m time-trial speeds (using the Aquapacer?, Study 3) and under three different race pacing conditions (using the Aquapacer?, Study 4). Between 8 and 15 male national or club standard 200 m breaststroke swimmers participated in each of the studies. The swimmers in Study 2, despite being less well trained than the swimmers in Study 1 and part of a more heterogeneous group in terms of swimming performance, repeatedly demonstrated less random error in pacing, suggesting that the Aquapacer? may be preferable to the poolside clock when swimmers are being required to pace accurately. The Aquapacer? also enabled swimmers to pace accurately at racespecific swimming speeds (until fatigue precluded them from holding pace) (Study 3), and through a change in pace at race-specific speeds (Study 4), which suggests that it may be of use in entraining racing strategies.  相似文献   
7.
ABSTRACT

Athletes’ energy distribution over a race (e.g. pacing behaviour) varies across different sports. Swimming is a head-to-head sport with unique characteristics, such as propulsion through water, a multitude of swimming stroke types and lane-based racing. The aim of this paper was to review the existing literature on pacing behaviour in swimming. According to PRISMA guidelines, 279 articles were extracted using the PubMed and Web of Science databases. After the exclusion process was conducted, 16 studies remained. The findings of these studies indicate that pacing behaviour is influenced by the race distance and stroke type. Pacing behaviours in swimming and time-trial sports share numerous common characteristics. This commonality can most likely be attributed to the lane-based racing set-up. The low efficiency of swimming resulting from propulsion through the water induces a rapid accumulation of blood lactate, prompting a change in swimmers’ biomechanical characteristics, with the goal of minimising changes in velocity throughout the race. Although the literature on youth swimmers is scarce, youth swimmers demonstrate more variable pacing profiles and have more difficulty in selecting the most beneficial energy distribution.  相似文献   
8.
Pacing strategies in cross-country skiing have been investigated in several studies. However, none of the previous studies have been verified by collected skiing data giving the skiing velocities along a measured track. These can be used to calculate the propulsive power output. Collected real-time positioning data from a cross-country sprint skiing race were used to estimate the propulsive power by applying a power balance model. Analyses were made for the time-trial and the final for one female and one male skier. The average propulsive power over the whole race times were 311 and 296 W during the time trial and 400 and 386 W during the final, for the female and male skier, respectively. Compared to the average propulsive power over the whole race, the average active propulsive phases were calculated as 33 and 44% higher in the time trials and 36 and 37% higher in the finals for the female and male, respectively. The current study presents a novel approach to use real-time positioning data to estimate continuous propulsive power during cross-country sprint skiing, enabling in-depth analyses of power output and pacing strategies.  相似文献   
9.
The kinematic analysis of competition breaststroke swimming has tended to focus on the mean values of swimming speed, stroke rate and stroke length; values in individual lengths, as well as the start, turns and finish, have largely been ignored. This study includes all such variables and aims to improve the coach's holistic understanding of breaststroke racing by determining the relationships and diff erences between and within these selected kinematic variables. We also compare 100-m events with 200-m events to determine if there are characteristic diff erences between them. Competitive breaststroke swimming performances in 100-m events (males: n = 159, finishing time = 65.05 - 2.62 s; females: n = 158, finishing time = 74.04 - 3.66 s) and 200-m events (males: n = 159, finishing time = 141.47 - 6.15 s; females: n = 158, finishing time = 158.66 - 7.87 s) were collected and analysed from 12 world, international and national championships. The better 100-m and 200-m breaststroke swimmers were found to demonstrate greater competency in the kinematic variables measured, except stroke kinematics, which were unique to each individual. These findings suggest that coaches should place emphasis on all of the kinematic components in training and that they should attempt to identify the stroke rate to stroke length ratio most appropriate for the individual. Finally, characteristic diff erences do exist between the 100-m and 200-m events, which has implications for how swimmers might train for each event.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号