首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Residual force enhancement due to active muscle lengthening allows similar reductions in neuromuscular activation during position- and force-control tasks
Authors:Rhiannon Marion  Geoffrey A Power
Institution:Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Abstract:BackgroundResidual torque enhancement (rTE) is the increase in torque observed during the isometric steady state following active muscle lengthening when compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. In the rTE state, owing to an elevated contribution of passive force to total force production, less active force is required, and there is a subsequent reduction in activation. In vivo studies of rTE reporting an activation reduction are often performed using a dynamometer, where participants contract against a rigid restraint, resisting a torque motor. rTE has yet to be investigated during a position task, which involves the displacement of an inertial load with positional control.MethodsA total of 12 participants (6 males, 6 females; age = 22.8 ± 1.1 years, height = 174.7 ± 8.6 cm, mass = 82.1 ± 37.7 kg; mean ± SD) completed torque- and position-matching tasks at 60% maximum voluntary contraction for a fixed-end isometric contraction and an isometric contraction following active lengthening of the ankle dorsiflexors.ResultsThere were no significant differences in activation between torque- and position-matching tasks (p = 0.743), with ~27% activation reduction following active lengthening for both task types (p < 0.001).ConclusionThese results indicate that rTE is a feature of voluntary, position-controlled contractions. These findings support and extend previous findings of isometric torque-control conditions to position-controlled contractions that represent different tasks of daily living.
Keywords:Eccentric  Electromyography  History dependence of force  Position tasks  Residual force enhancement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号