首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stabilization of artificial gas-lift process using nonlinear predictive generalized minimum variance control
Authors:Jing Shi  Ahmed Al-Durra  Rachid Errouissi  Igor Boiko
Institution:Khalifa University, Sas Al-Nakhl Campus Abu Dhabi, United Arab Emirates
Abstract:Artificial gas-lift (AGL) is one of the most widely used methods in oil production to maintain acceptable oil flow to the processing equipment and sales when the reservoir pressure is not high enough. In spite of its popularity, the AGL process is prone to casing-heading instability, which is revealed as significant flow oscillation. This is undesirable as it results in production losses and unstable behavior that has negative impact on the downstream equipment. Controller design for such a process is very challenging as it exhibits highly nonlinear dynamics. In this work, the predictive generalized minimum variance control (NPGMV) is employed to derive a robust controller based on the state estimation to stabilize AGL process when casing-heading phenomenon occurs. A closed-form optimal control law is obtained based on the Taylor series approximation. Further, a nonlinear state observer is produced and combined with the controller to ensure closed-loop control through variables that are most beneficial to the system performance, which are unmeasurable and can be obtained only via estimation. Through simulation studies, the effectiveness of the proposed controller is demonstrated.
Keywords:Corresponding author  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号