首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular game theory for a toxin-dominant food chain model
Authors:Bowen Li  Jonathan R Silva  Xiancui Lu  Lei Luo  Yunfei Wang  Lizhen Xu  Aerziguli Aierken  Zhanserik Shynykul  Peter Muiruri Kamau  Anna Luo  Jian Yang  Deyuan Su  Fan Yang  Jianmin Cui  Shilong Yang  Ren Lai
Abstract:Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to overcome toxins their prey produce. Much remains unknown about the genetic and molecular game process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we found that the scorpion α-toxins irreversibly activate the skeletal muscle sodium channel of their prey (insect, BgNaV1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr motif of BgNaV1. However, in the predatory game between frogs and scorpions, with a single point mutation (Lys to Glu) in this motif of the frog''s skeletal muscle sodium channel (fNaV1.4), fNaV1.4 breaks this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions without showing paralysis. Interestingly, this molecular strategy also has been employed by some other scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system, implying the evolutionary game theory at a molecular level.
Keywords:toxin  receptor  molecular game  amphibian  scorpion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号