首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomechanics of the two-handed dyno technique for sport climbing
Authors:Franz Konstantin Fuss  Günther Niegl
Institution:1. School of Aerospace, Mechanical and Manufacturing, Engineering, RMIT University, PO Box 71, Bundoora, Melbourne, VIC, 3083, Australia
2. MedClimb, Austrian Mountaineering Association, Lerchenfelderstrasse 28, 1080, Vienna, Austria
Abstract:The two-handed dyno technique was studied in nine experienced climbers. According to textbooks, the preferred technique is to jump only as high as necessary and to grab the upper hold exactly at the dead point (highest position of the body centre of mass). Piezoelectric force transducers were connected to the right and left footholds and to the lower and upper handholds. From the forces, the vertical take-off velocity and the jump height were calculated. The results showed that in unsuccessful jumps, the vertical take-off velocity is too small. In successful jumps, however, the vertical take-off velocity is higher than required. In order to reach the same required minimal height, the successful jumper produced a higher force than the unsuccessful (including marginal fail) jumper did. The force produced by the feet was approximately 1.8 times higher than that of the hands. Unsuccessful jumps were significantly closer to the dead point than successful ones. The peak force at the fingers after touchdown at the upper hold ranged from 1.1 to 1.63 times body weight. Overshooting, i.e. jumping higher than required resulted in a smaller peak force and a greater chance of performing a successful jump. In successful jumps, the climber jumps higher than required and grabs the upper hold before and below the dead point. Furthermore, the closer to the dead point the climber grasps the upper hold, the higher is the peak reaction force at the fingers. The advice for the climber is to jump higher than necessary (at least 10 cm), and to grab the handhold before the dead point. This results in a high success rate and a minimal finger injury risk.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号