首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat transfer in a dipolar flow through a porous channel
Institution:School of Physics Science and Engineering, Tongji University, Shanghai 200092, PR China
Abstract:The theory of constitutive equations for dipolar fluids, obtained by Bleustein and Green, is applied to investigate the Couette and Poiseuille flows between parallel plates maintained at constant but different temperatures in addition to being subjected to uniform injection and suction. Explicit expressions for the velocity and the temperature fields are obtained. It is found that different sets of conditions imposed on the flow parameters lead to different expressions for the velocity distribution which are valid only for restricted ranges of the cross-flow Reynolds number R. A table showing the various conditions imposed on the parameters, the corresponding solutions and the ranges of R for which the solution exist is presented. Velocity and temperature profiles for the dipolar and the Newtonian flows are drawn and compared to bring out the important differences resulting from the variations in R and B, the Brinkman number. For the dipolar Couette flow it is found that the value of B at which a transition from cooling to heating of the suction wall occurs always exceeds its corresponding value for Newtonian flow. Tables comparing the rates of heat transfer at the walls are provided for several values of R and B.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号