首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From Vision to Change: Educational Initiatives and Research at the Intersection of Physics and Biology
Authors:Eric Brewe  Nancy J Pelaez  Todd J Cooke
Institution:Florida International University, Miami, FL 33199
Abstract:In this editorial we link the articles published in this Special Issue with the framework from Vision and Change and summarize findings from the editorial process of assembling the Special Issue.The authors of Vision and Change (American Association for the Advancement of Science AAAS], 2011 ) issued the following call to action to biologists, physicists, chemists, and mathematicians:
To ensure that all students graduate with a basic level of scientific literacy and meet the challenges raised in Bio 2010: Transforming Undergraduate Education for Future Research Biologists (2003), Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee (2009), A New Biology for the 21st Century (2009), and similar reports, biologists, physicists, chemists, and mathematicians need to look thoughtfully at ways they can introduce interdisciplinary approaches into their gateway courses. (AAAS, 2011 , p 54)
The articles that comprise this special issue of CBE—Life Sciences Education (LSE) take important steps toward responding to this call by describing teaching and learning at the intersection of biology and physics. Broadly defined, the work aims to encourage the development of genuine interdisciplinary understanding, or “the capacity to integrate knowledge and modes of thinking in two or more disciplines or established areas of expertise to produce a cognitive advancement … in ways that would have been impossible or unlikely through single disciplinary means” (Boix Mansilla and Duraisingh, 2007 , p. 219). Indeed, many of the most exciting recent breakthroughs in the life sciences have occurred at the intersection of these established disciplines. Physical laws help to predict, describe, and explain biological phenomena occurring at molecular to ecosystem levels, and the development of new physical tools helps to visualize these phenomena in new and informative ways. Thus, the Vision and Change report stresses the urgency for undergraduate biology and physics educators to develop, assess, and revise content materials, pedagogical strategies, and epistemological perspectives for encouraging student learning in interdisciplinary biology and physics classes.We received more than 50 abstracts in response to the call for this special issue, and we are pleased to publish 10 Articles, four Essays, and eight Features reflecting the state of educational transformation at the intersection of biology and physics. Several articles describe integration of physics into biology curriculum or biology into physics curriculum that goes beyond simple provision of examples from the respective disciplines (e.g., Batiza et al., Christensen et al., Svoboda Gouvea et al., O’Shea et al., Thompson et al., Breckler et al.). A number of articles address cross-cutting themes, such as problem solving (e.g., Hoskinson et al.) and energy (e.g., Cooper and Klymkowsky, Svoboda Gouvea et al.), the application of mathematical laws to biological phenomena (e.g., Redish and Cooke), epistemology (e.g., Watkins and Elby), and assessment as a powerful tool for driving curriculum change, in this case the integration of physics and biological thinking (e.g., Svoboda Gouvea et al., Momsen et al., Thompson et al.). Other articles reflect research crossing disciplinary boundaries to introduce research approaches (e.g., Watkins and Elby, Momsen et al.) or innovative curriculum models (e.g., Manthey and Brewe, Donovan et al., Thompson et al.) to help students develop reasoning strategies that move beyond traditional disciplinary boundaries. The Hillborn and Friedlander essay highlights potential impacts of cross-disciplinary collaboration in education on the revised Medical College Admission Test.We were pleased by the number of articles coauthored by physicists and biologists working in teams to examine and recommend new directions for the future of biology education. These teams brought a richness and depth of knowledge in both disciplines that made it possible to move instruction and research forward at the intersection of the disciplines. Together, these articles start to provide the evidence base for responding to the calls for interdisciplinary teaching and learning. Further, they provide opportunities to compare and contrast education and epistemologies in biology and physics, allowing for more informed integration of knowledge from these disciplines.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号