首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of footwear midsole thickness on running biomechanics
Authors:Mark HC Law  Eric MF Choi  Stephanie HY Law  Subrina SC Chan  Sonia MS Wong
Institution:1. Gait &2. Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
Abstract:Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (< 0.001), footstrike angle (= 0.013), contact time (< 0.001), cadence (= 0.003), and stride length (= 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.
Keywords:Minimalist  maximalist  vertical loading rate  footstrike pattern  temporal spatial parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号