首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aerodynamic properties of an archery arrow
Authors:Takeshi Miyazaki  Keita Mukaiyama  Yuta Komori  Kyouhei Okawa  Satoshi Taguchi  Hiroki Sugiura
Institution:1. Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
2. JAXA, 7-44-1 Jindaiji-higashimachi, Chofu, Tokyo, 182-8522, Japan
Abstract:Two support-interference-free measurements of aerodynamic forces exerted on an archery arrow (A/C/E; Easton Technical Products) are described. The first measurement is conducted in a wind tunnel with JAXA’s 60 cm Magnetic Suspension and Balance System, in which an arrow is suspended and balanced by magnetic force against gravity. The maximum wind velocity is 45 m/s, which is less than a typical velocity of an arrow (about 60 m/s) shot by an archer. The boundary layer of the arrow remains laminar in the measured Re number range (4.0 × 103 < Re < 1.5 × 104), and the drag coefficient is about 1.5 for Re > 1.0 × 104. The second measurement is performed by a free flight experiment. Using two high-speed video cameras, we record the trajectory of an archery arrow and analyze its velocity decay rate, from which the drag coefficient is determined. In order to investigate Re number dependence of the drag coefficient in a wider range (9.0 × 103 < Re < 2.4 × 104), we have developed an arrow-shooting system using compressed air as a power source, which launches the A/C/E arrow at an arbitrary velocity up to 75 m/s. We attach two points (piles) of different type (streamlined and bullet) to the arrow-nose. The boundary layer is laminar for both points for Re less than about 1.2 × 104. It becomes turbulent for Re larger than 1.2 × 104 and the drag coefficient increases to about 2.6, when the bullet point is attached. In the same Re range, two values of drag coefficient are found for the streamlined point, of which the lower value is about 1.6 (laminar boundary layer) and the larger value is about 2.6 (turbulent boundary layer), confirming that the point-shape has a crucial influence on the laminar to turbulent transition of the boundary layer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号