首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes,nanorods and nanowires
Authors:Wu Tong  Bolong Huang  Pengtang Wang  Qi Shao  Xiaoqing Huang
Institution:College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China;Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
Abstract:Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.
Keywords:Pt3Fe  nanowire  high-index  facet-controlled  N2 reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号