首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Robust augmented complex-valued normalized M-estimate subband adaptive filtering algorithm against colored non-circular inputs and impulsive noise
Institution:1. Department of Automation, Xiamen University, Xiamen, Fujian 361005, China;2. School of Systems Design and Intelligent Manufacturing, South University of Science and Technology, Shenzhen Guangdong 518000, China;1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China;2. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract:Recently, the augmented complex-valued normalized subband adaptive filtering (ACNSAF) algorithm has been proposed to process colored non-circular signals. However, its performance will deteriorate severely under impulsive noise interference. To overcome this issue, a robust augmented complex-valued normalized M-estimate subband adaptive filtering (ACNMSAF) algorithm is proposed, which is obtained by modifying the subband constraints of the ACNSAF algorithm using the complex-valued modified Huber (MH) function and is derived based on CR calculus and Lagrange multipliers. In order to improve both the convergence speed and steady-state accuracy of the fixed step size ACNMSAF algorithm, a variable step size (VSS) strategy based on the minimum mean squared deviation (MSD) criterion is devised, which allocates individual adaptive step size to each subband, fully exploiting the structural advantages of SAF and significantly improving the convergence performance of the ACNMSAF algorithm as well as its tracking capability in non-stationary environment. Then, the stability, transient and steady-state MSD performance of the ACNMSAF algorithm in the presence of colored non-circular inputs and impulsive noise are analyzed, and the stability conditions, transient and steady-state MSD formulas are also derived. Computer simulations in impulsive noise environments verify the accuracy of theoretical analysis results and the effectiveness of the proposed algorithms compared to other existing complex-valued adaptive algorithms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号