首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running
Authors:Michael Wilkinson  Alistair Ewen  Nicholas Caplan  David O’leary  Neil Smith  Richard Stoneham
Institution:1. Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK;2. Golden Jubilee Hospital, Clydebank G81 4DY, Scotland;3. School of Design, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
Abstract:The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23?±?5 yrs; stature 1.78?±?0.06 m; mass 72.6?±?9.2?kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (?25 to ?9.3?BW?s?1; 60% likely beneficial reduction) and plantar sensation was increased (46–58?mm) with the insole. Fpeak (?0.1 to 0.14?BW) and velocity (?0.02 to 0.06?m?s?1) were similar. Stride length, flight and contact time were lower (?0.13 to ?0.01 m; ?0.02 to?0.01?s; ?0.016 to ?0.006?s) and stride rate was higher (0.01–0.07 steps?s?1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.
Keywords:Biomechanics  kinetics  injury  prevention
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号