首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase
Authors:Ruijing Lv  Xuze Guan  Jiahua Zhang  Yongyao Xia  Jiayan Luo
Institution:1. Key Laboratory for Green Chemical Technology of Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;2. Department of Chemistry, Fudan University, Shanghai 200433, China
Abstract:Rechargeable magnesium batteries have received extensive attention as the Mg anodes possess twice the volumetric capacity of their lithium counterparts and are dendrite-free. However, Mg anodes suffer from surface passivation film in most glyme-based conventional electrolytes, leading to irreversible plating/stripping behavior of Mg. Here we report a facile and safe method to obtain a modified Mg metal anode with a Sn-based artificial layer via ion-exchange and alloying reactions. In the artificial coating layer, Mg2Sn alloy composites offer a channel for fast ion transport and insulating MgCl2/SnCl2 bestows the necessary potential gradient to prevent deposition on the surface. Significant improved ion conductivity of the solid electrolyte interfaces and decreased overpotential of Mg symmetric cells in Mg(TFSI)2/DME electrolyte are obtained. The coated Mg anodes can sustain a stable plating/stripping process over 4000 cycles at a high current density of 6 mA cm−2. This finding provides an avenue to facilitate fast ion diffusion kinetics of Mg metal anodes in conventional electrolytes.
Keywords:fast ion transport interphase  artificial layer  Mg metal anodes  conventional electrolytes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号