首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits
Authors:Haihao Guo  Ying Xia  Ruixia Bai  Xingchao Zhang  Fang Huang
Institution:1. Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany;2. Department of Earth and Planetary Sciences, McGill University, Montreal H3A 0E8, Canada;3. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;4. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
Abstract:Hydrothermal fluid is essential for transporting metals in the crust and mantle. To explore the potential of Cu isotopes as a tracer of hydrothermal-fluid activity, Cu-isotope fractionation factors between Cl-bearing aqueous fluids and silicate magmas (andesite, dacite, rhyolite dacite, rhyolite and haplogranite) were experimentally calibrated. Fluids containing 1.75–14 wt.% Cl were mixed together with rock powders in Au95Cu5 alloy capsules, which were equilibrated in cold-seal pressure vessels for 5–13 days at 800–850°C and 2 kbar. The elemental and Cu-isotopic compositions of the recovered aqueous fluid and solid phases were analyzed by (LA-) ICP–MS and multi-collector inductively coupled plasma mass spectrometry, respectively. Our experimental results show that the fluid phases are consistently enriched in heavy Cu isotope (65Cu) relative to the coexisting silicates. The Cu-isotope fractionation factor (Δ65CuFLUID-MELT) ranges from 0.08 ± 0.01‰ to 0.69 ± 0.02‰. The experimental results show that the Cu-isotopic fractionation factors between aqueous fluids and silicates strongly depend on the Cu speciation in the fluids (e.g. CuCl(H2O), CuCl2 and CuCl32−) and silicate melts (CuO1/2), suggesting that the exsolved fluids may have higher δ65Cu than the residual magmas. Our results suggest the elevated δ65Cu values in Cu-enriched rocks could be produced by addition of aqueous fluids exsolved from magmas. Together with previous studies on Cu isotopes in the brine and vapor phases of porphyry deposits, our results are helpful for better understanding Cu-mineralization processes.
Keywords:Cu isotopes  cold-seal pressure vessels  aqueous fluids  silicate magma  porphyry deposit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号