首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trajectory tracking control for rotary steerable systems using interval type-2 fuzzy logic and reinforcement learning
Authors:Chi Zhang  Wei Zou  Ningbo Cheng  Junshan Gao
Institution:1. Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, PR China;2. School of Automation, Harbin University of Science and Technology, Harbin, 150080, PR China;3. Tianjin Intelligent Technology Institute of CASIA Co. Ltd, Tianjin, 300309, PR China
Abstract:Rotary steerable system (RSS) is a directional drilling technique which has been applied in oil and gas exploration under complex environment for the requirements of fossil energy and geological prospecting. The nonlinearities and uncertainties which are caused by dynamical device, mechanical structure, extreme downhole environment and requirements of complex trajectory design in the actual drilling work increase the difficulties of accurate trajectory tracking. This paper proposes a model-based dual-loop feedback cooperative control method based on interval type-2 fuzzy logic control (IT2FLC) and actor-critic reinforcement learning (RL) algorithms with one-order digital low-pass filters (LPF) for three-dimensional trajectory tracking of RSS. In the proposed RSS trajectory tracking control architecture, an IT2FLC is utilized to deal with system nonlinearities and uncertainties, and an online iterative actor-critic RL controller structured by radial basis function neural networks (RBFNN) and adaptive dynamic programming (ADP) is exploited to eliminate the stick–slip oscillations relying on its approximate properties both in action function (actor) and value function (critic). The two control effects are fused to constitute cooperative controller to realize accurate trajectory tracking of RSS. The effectiveness of our controller is validated by simulations on designed function tests for angle building hole rate and complete downhole trajectory tracking, and by comparisons with other control methods.
Keywords:Corresponding author  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号