首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Daily natural heat convection in a historical hall
Authors:Carla Balocco  
Institution:aDipartimento di Energetica “Sergio Stecco”, Università di Firenze, Via S. Marta 3, 50139 Firenze, Italy
Abstract:The use of numerical simulation methods for the Cultural Heritage is of increasing importance for the analysis, conservation, restoration and appreciation of works of art. This is particularly important when their preservation and planned maintenance is the primary aim. Today museums, and particularly historical buildings converted to museums, should be considered as places where precious artefacts should have first-rate protection and conservation. It is a question of solving the compromise between protection, conservation and comfort for works of art and/or visitors, with the consequence that preservation and planned maintenance criteria must prevail over use requirements. Refurbishment and conservation of a building, and requirements for visitor presence and works of art need different thermo-physical indoor parameter values. The present paper concerns the thermal and air velocity analysis of the Salone dei Duecento (the Hall of the Two Hundred of the Palazzo Vecchio (Old Palace)) in Florence. In this paper an appropriate transient 3D model by Computational Fluid Dynamics (CFD) software based on the finite element method (FEM) was used. Variations and interaction between indoor and outdoor microclimatic conditions, and thermo-physical behaviour of the building connected to lighting, visitor presence and cooling–heating fan coils system were considered. The 3D modelling method provided by the present paper can be applied to several situations where there is interaction between outdoor and indoor climate variations and the building structure. It can be very useful for defining measures to preserve tapestries, understanding deterioration processes, and developing new conservation techniques and strategies for care and exhibition.
Keywords:Historical building  Thermal comfort  Tapestry conservation  Thermodynamics  CFD simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号