首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离激元Ag纳米流体光热转换特性
作者姓名:陈梅洁  唐天琪  刘子玉  何玉荣
作者单位:哈尔滨工业大学能源科学与工程学院, 哈尔滨 150001
基金项目:国家自然科学基金优秀青年基金(51322601)、黑龙江省自然科学基金杰出青年基金(JC2016009)和哈尔滨市杰出青年人才项目(2014RFYXJ004)资助
摘    要:采用一种考虑热损失的光热转换计算模型,实验研究Ag纳米流体的光热转换特性。在传统工质水中加入纳米颗粒,使工质对光的吸收和散射特性得到强化,从而获得较好的光热转换特性。颗粒体积分数为2.5×10-6的Ag纳米流体获得最大的温升67.31℃,是基液水的1.8倍。但是,由于在计算光热转换效率时考虑了热损失,其光热转换效率是基液水的2.9倍。随着颗粒浓度的增大,颗粒的温升和光热转换效率逐渐增大,温升和光热转换效率的变化速率均逐渐较小。

关 键 词:太阳能  Ag纳米流体  等离激元  光热转换  
收稿时间:2017-05-04
修稿时间:2017-07-03

Investigating on photothermal conversion properties of plasmonic Ag nanofluids
Authors:CHEN Meijie  TANG Tianqi  LIU Ziyu  HE Yurong
Institution:School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:A calculation model incorporating the heat loss is used to study the photothermal conversion characteristics of Ag nanofluids in this work. Adding nanoparticles to the traditional working fluid enhances the light absorption and scattering to obtain better photothermal conversion abilities. The Ag nanofluid with a particle volume fraction of 2.5×10-6 leads to the maximum temperature rise of 67.31℃, which is 1.8 times that of the base fluid. However, its photothermal conversion efficiency is 2.9 times that of the base liquid since the heat loss is taken into account in the calculation model. With the increase in particle concentration, the temperature rise and the photothermal conversion efficiency gradually increase, and the change rates of temperature rise and photothermal conversion efficiency become gradually small.
Keywords:solar energy                                                                                                                        Ag nanofluids                                                                                                                        plasmonic                                                                                                                        photothermal conversion
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号