首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Road cycle TT performance: Relationship to the power-duration model and association with FTP
Authors:Paul T Morgan  Matthew I Black  Stephen J Bailey  Andrew M Jones
Institution:1. Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK;2. School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
Abstract:Purpose: To determine the accuracy of critical power (CP) and W? (the curvature constant of the power-duration relationship) derived from self-paced time-trial (TT) prediction trials using mobile power meters to predict 16.1-km road cycling TT performance. This study also aimed to assess the agreement between functional threshold power (FTP) and CP.

Methods: Twelve competitive male cyclists completed an incremental test to exhaustion, a FTP test and 4–5 self-paced TT bouts on a stationary bike within the lab, and a 16.1 km road TT, using mobile power meters.

Results: CP and W? derived from the power-duration relationship closely predicted TT performance. The 16.1-km road TT completion time (26.7 ± 2.2 min) was not significantly different from and was significantly correlated with the predicted time-to-completion (27.5 ± 3.3 min, = 0.89, < 0.01). CP and FTP were not significantly different (275 ± 40 W vs. 278 ± 42 W, > 0.05); however, the limits of agreement between CP and FTP were 30 to -36 W.

Discussion: The findings of this study indicate that CP and W? determined using mobile power meters during maximal, self-paced TT prediction trials can be used to accurately predict 16.1-km cycling performance, supporting the application of the CP and W? for performance prediction. However, the limits of agreement were too large to consider FTP and CP interchangeable.

Keywords:Critical power  functional threshold power  power meter  power-duration relationship  time-trial
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号