首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of repeat-sprint training in hypoxia on post-exercise interleukin-6 and F2-isoprostanes
Authors:Paul S R Goods  Brian Dawson  Grant J Landers  Christopher J Gore  Kevin Croft  Peter Peeling
Institution:1. School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Australia;2. Australian Institute of Sport, Canberra, Australia;3. Exercise Physiology Laboratory, Flinders University, Adelaide, Australia;4. School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia
Abstract:This investigation examined the oxidative stress (F2-Isoprostane; F2-IsoP) and inflammatory (interleukin-6; IL-6) responses to repeat-sprint training in hypoxia (RSH). Ten trained male team sport athletes performed 3(sets)*9(repetitions)*5?s cycling sprints in simulated altitude (3000?m) and sea-level conditions. Mean and peak sprint power output (MPO and PPO) were recorded, and blood samples were collected pre-exercise, and again at 8 and 60?min post-exercise. Both MPO and PPO were significantly reduced in hypoxia (compared to sea-level) in the second (MPO: 855?±?89 vs. 739?±?95?W, p?=?.006; PPO: 1024?±?114 vs. 895?±?112?W, p?=?.010) and third (MPO: 819?±?105 vs. 686?±?83?W, p?=?.008; PPO: 985?±?125 vs. 834?±?99?W, p?=?.008) sets, respectively. IL-6 was significantly increased from pre- to 1?h post-exercise in both hypoxia (0.7?±?0.2 vs. 2.4?±?1.4?pg/mL, p?=?.004) and sea-level conditions (0.7?±?0.2 vs. 1.6?±?0.3?pg/mL, p?d?=?0.80) suggesting higher IL-6 levels of post-hypoxia. F2-IsoP was significantly lower 1?h post-exercise in both the hypoxic (p?=?.005) and sea-level (p?=?.002) conditions, with no differences between trials. While hypoxia can impact on exercise intensity and may result in greater post-exercise inflammation, it appears to have little effect on oxidative stress. These results indicate that team sport organisations with ready access to hypoxic training facilities could confidently administer RSH without significantly increasing the post-exercise inflammatory or oxidative stress response.
Keywords:Altitude training  inflammation  oxidative stress  arterial desaturation  team sport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号