首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p
Institution:1. Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi''an Jiaotong University, Xi''an 710049, China;2. School of Aerospace Medicine, Fourth Military Medical University, Xi''an 710032, China;3. Medical School of Chinese PLA, Beijing 100853, China;4. Laboratory Animal Center, Fourth Military Medical University, Xi''an 710032, China
Abstract:BackgroundAngiogenesis constitutes a major mechanism responsible for exercise-induced beneficial effects. Our previous study identified a cluster of differentially expressed extracellular vesicle microRNAs (miRNAs) after exercise and found that some of them act as exerkines. However, whether these extracellular vesicle miRNAs mediate the exercise-induced angiogenesis remains unknown.MethodsA 9-day treadmill training was used as an exercise model in C57BL/6 mice. Liver-specific adeno-associated virus 8 was used to knock down microRNA-122-5p (miR-122-5p). Human umbilical vein endothelial cells were used in vitro.ResultsAmong these differentially expressed extracellular vesicle miRNAs, miR-122-5p was identified as a potent pro-angiogenic factor that activated vascular endothelial growth factor signaling and promoted angiogenesis both in vivo and in vitro. Exercise increased circulating levels of miR-122-5p, which was produced mainly by the liver and shuttled by extracellular vesicles in mice. Inhibition of circulating miR-122-5p or liver-specific knockdown of miR-122-5p significantly abolished the exercise-induced pro-angiogenic effect in skeletal muscles, and exercise-improved muscle performance in mice. Mechanistically, miR-122-5p promoted angiogenesis through shifting substrate preference to fatty acids in endothelial cells, and miR-122-5p upregulated endothelial cell fatty-acid utilization by targeting 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT1). In addition, miR-122-5p increased capillary density in perilesional skin tissues and accelerated wound healing in mice.ConclusionThese findings demonstrated that exercise promotes angiogenesis through upregulation of liver-derived extracellular vesicle miR-122-5p, which enhances fatty acid utilization by targeting AGPAT1 in endothelial cells, highlighting the therapeutic potential of miR-122-5p in tissue repair.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号