首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers
Authors:Lee Bo Ram  Lee Kwang Ho  Kang Edward  Kim Dong-Sik  Lee Sang-Hoon
Institution:1.Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-703, South Korea;2.Department of Mechanical Engineering, Massachusetts of Institute Technology, Massachusetts 02139, USA;3.Department of Surgery, College of Medicine, Korea University, Seoul 136-703, South Korea
Abstract:The successful encapsulation of human hepatocellular carcinoma (HepG2) cells would greatly assist a broad range of applications in tissue engineering. Due to the harsh conditions during standard chitosan fiber fabrication processes, encapsulation of HepG2 cells in chitosan fibers has been challenging. Here, we describe the successful wet-spinning of chitosan-alginate fibers using a coaxial flow microfluidic chip. We determined the optimal mixing conditions for generating chitosan-alginate fibers, including a 1:5 ratio of 2% (w∕w) water-soluble chitosan (WSC) solution to 2% (w∕w) alginate solution. Ratio including higher than 2% (w∕w) WSC solution increased aggregation throughout the mixture. By suspending cells in the WSC-alginate solution, we successfully fabricated HepG2 cell-laden fibers. The encapsulated HepG2 cells in the chitosan-alginate fibers were more viable than cells encapsulated in pure alginate fibers, suggesting that cross-linked chitosan provides a better environment for HepG2 cells than alginate alone. In addition, we found that the adhesion of HepG2 cells on the chitosan-alginate fiber is much better than that on the alginate fibers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号