首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
1细胞内乳酸穿梭学说的提出Brooks等人把离体的骨骼肌线粒体和心肌线粒体用培养基培养,发现乳酸转运蛋白MCT阻断剂CINN阻断了乳酸和丙酮酸在线粒体的氧化;乳酸脱氢酶LDH的阻断剂OX阻断了乳酸在线粒体中的氧化;不进行LDH的活性阻断时,乳酸在线粒体中的氧化率超过丙酮酸10-40%。暗示,线  相似文献   

2.
运用血乳酸值指导游泳训练   总被引:1,自引:1,他引:0  
一、运动和血乳酸乳酸是糖的无氧代谢的最终产物。在激烈运动中,当氧的供应不充分,不能使糖原分解成二氧化碳和水时,此时糖代谢中产生的丙酮酸还原为乳酸。乳酸的产生与运动强度关系密切,时间短强度大的运动机体相对缺氧,糖无氧代谢成为机体的主要供能系统,因此肌肉中乳酸的生成较多;随着运动时间的逐渐延长,机体有氧代谢供能的比例逐渐加大,乳酸的生成也就逐渐减少。有人在实验室条件下,用逐步增加运动强度的方法,测定不同运动强度的  相似文献   

3.
目前在运动生理及其代谢领域中一个最显著的观念性革命是对乳酸代谢的新认识.过去乳酸一直被视为运动中缺氧代谢即糖酵解过程中的终产物,并在体内积蓄而引起机体疲劳和氧债形成.然而目前的研究资料却与之截然不同:乳酸的产生、  相似文献   

4.
通过对运动时线粒体是否缺氧和提高丙酮酸脱氢酶活性可降低肌乳酸的生成两方面,阐述运动时肌乳酸的产生机制。提出乳酸的生成可能是由于运动时丙酮酸的生成量大于线粒体的氧化磷酸能力,而不能简单认为是由于机体的缺氧造成的。  相似文献   

5.
快慢肌纤维的特点快肌纤维得名正因为它收缩快(30~50次/秒),而慢肌纤维则只有10~15次/秒。快慢肌纤维耐久力和张力不同。慢肌纤维因有氧代谢能力强,故耐久工作能力也强。一般认为慢肌纤维有氧能力强是由下列因素所致: 一.肌红蛋白含量是快肌纤维的2~5倍(Keul等,1972)。慢肌纤维呈红色也是由此造成。二.慢肌纤维线粒体多且大。线粒体中氧化酶的活性也高(Costill等,1976)。这样可以氧化更多的丙酮酸而防止乳酸堆积。三.每根慢肌纤维周围有较多的毛细血管(Baldwin等,1972),由此可以加快氧向肌纤维弥散以及代谢产物的排出速率。4  相似文献   

6.
在运动生化检验中,血乳酸作为糖在体内无氧代谢的标志已被人们熟知和广泛采用。血乳酸升高和体内丙酮酸代跗有关,在低强度运动时,丙酮酸在肌肉中经丙酮酸脱羧酶的作用转变为乙酰辅酶A,继而经三羧酸循环生成二氧化碳和水,并供应能量满足运动需要。在无氧负荷下,  相似文献   

7.
乳酸系糖元氧代谢的最终产物。当剧烈运动时,糖元氧代谢加强,血乳酸水平成倍增加。而糖有氧代谢提高后,完成同样运动,血乳酸相对减少。因此血乳酸是评定糖元氧代谢和有氧代谢的重要指标。测定乳酸的方法很多,主要有化学法和酶法(1.2)两类。化学法如Barke-Summ  相似文献   

8.
丙酮酸是人体内产生的三碳酮酸,它是糖酵解途径的最终产物,在细胞浆中还原成乳酸供能,或进入线粒体内氧化生成乙酰辅酶A,进入三羧酸循环,被氧化成二氧化碳和水,完成葡萄糖的有氧氧化供能过程。丙酮酸还可通过乙酰辅酶A和三羧酸循环实现体内糖、脂肪和氨基酸间的相互转化,在三大营养物质的代谢联系中起着重要的枢纽作用。随着科学技术的迅猛发展,丙酮酸被广泛应用于医药、食品、化妆品、农业及环保等各领域,由于丙酮酸本身极不稳定,而且食用时会令人感到恶心、肠胃不适,因此,在实际使用时经常将其制成盐类(钠盐,钙盐、钾盐、镁盐)以提高稳定性。  相似文献   

9.
鉴于线粒体把乳酸作为能源底物概念的重要性,笔者就乳酸穿梭的研究现状及其细胞内乳酸穿梭的研究、争论点作一综述。1细胞内乳酸穿梭假说在提出细胞间乳酸穿梭假说的研究期间,发现肝、心肌线粒体能氧化乳酸,但认为是由于实验过程中操作不当造成的。但  相似文献   

10.
目的:比较耐力训练和间歇性速度训练对静息骨骼肌糖酵解能力及线粒体PDK4、CPT-1基因转录的影响;方法:30只大鼠随机分为3组:安静组(C,n-10)、耐力训练组(E,n=10)、间歇性速度训练组(S,n=10),训练8周.间歇性速度训练:每天9~10次10 s极量强度(≥42 m/min)的跑台运动,间歇时间30~60 s;耐力训练:每天30~60 min低强度(≤16.7 m/min)的持续跑台运动;每周均训练6天.最后一次训练结束后的24~48 h内切取腓肠肌,比色法检测丙酮酸、乳酸、HK、PK活性,Real-time PCR检测PDK4、CFF-1的mR-NA表达;结果:1)E组和S组丙酮酸均非常显著地高于C组(P<0.01),E组与S组无显著差异;乳酸浓度E组与C组无显著差异,但S组显著高于E组(P<0.05)和C组(P<0.01);2)E组(P<0.05)和S组(Pd0.01)HK活性显著高于C组,但E组、S组PK活性与C组无显著差异;E组与s组的HK、PK活性均无显著差异;3)E组PDK4mRNA表达显著低于C组(P<0.05),S组CPT-1mRNA表达显著高于C组(P<0.05),E组与S纽的PDK4、CPT-1mRNA表达均无显著差异;结论:1)耐力训练与间歇性速度训练都能提高静息骨骼肌的丙酮酸水平,但只有间歇性速度训练提高静息骨骼肌的乳酸水平,说明间歇性速度训练很可能使骨骼肌在静息时的无氧代谢已处于活跃状态.耐力训练使丙酮酸升高则可能是脂肪酸氧化能力提高所必需的匹配效应;2)耐力训练与间歇性速度训练都能提高HK活性,但对PK活性无影响.耐力训练与间歇性速度训练在糖脂代谢中有着许多类似效应.间歇性速度训练也能作为一种节省时间的方式提高有氧代谢能力,但在提高有氧代谢能力的同时也能促进静息骨骼肌丙酮酸向乳酸的转化;3)耐力训练使PDK4转录抑制,间歇性速度训练使CPT-1转录上调,这与各训练方式下静息骨骼肌的乳酸水平有着高度一致性.  相似文献   

11.
乳酸是运动与肿瘤的共同代谢物。组织器官之间的乳酸穿梭是运动中骨骼肌快速合成ATP并维持工作能力的前提。运动与肿瘤发生风险负相关已成共识,但在乳酸代谢层面存在一定的矛盾,运动加快了乳酸在组织间周转,而"抗肿瘤"要求减少甚至切断乳酸穿梭。因此,首先讨论了4个与乳酸有关的机制冲突:1)运动乳酸生成对肿瘤微环境的利弊;2)运动激活乳酸脱氢酶对癌细胞生长的利弊;3)线粒体乳酸代谢是碳源循环利用还是加速肿瘤增长;4)乳酸诱导脂肪褐化是改善代谢还是加剧恶病质。为解决这些冲突,讨论了肌肉、肝脏、血液与癌细胞之间的乳酸交换机制,提出肌乳酸清除阈、肝乳酸转化阈、癌细胞乳酸阈、血乳酸阈等4个限制条件,进一步理解运动抗肿瘤的特异性。  相似文献   

12.
1、自行车运动时乳酸产生机制 自行车运动时,乳酸生成的主要部位是骨骼肌。糖原或葡萄糖酵解生成丙酮酸和还原型辅酶I.丙酮酸和NADH在细胞质由乳酸脱氢酶催化生成乳酸(CH3·CHOH·COOH),过程如下:  相似文献   

13.
<正> 人体剧烈运动终止后,在一定时间内耗氧量仍然超出安静状态下的耗氧量,生理生化学上把这一部分额外超出的氧量称为氧债,亦即运动时欠下的而在运动后需要偿还的氧。氧债假说是由希尔及其同事于本世纪20年代建立的。当时他们是试图把运动后恢复期内氧的消耗与乳酸的代谢联系起来而作的一种尝试。1933年,玛格利亚把氧债区分为快成分(非乳酸氧债),和慢成分(乳酸氧债),改进了希尔的氧债假说,从而形成了较完整的氧债概念。然而新近的许多研  相似文献   

14.
(一) 随着人体工作强度的逐渐增加,体内乳酸也先慢后快地堆积起来,乳酸开始迅速增加时的运动强度我们称为无氧阈。wasserman1973年对无氧阈有过如下定义:“无氧阈即为在代谢酸中毒和伴随而来的气体交换发生变化时的工作水平或耗氧水平”。我们认为,无氧阈可以看作是引起血乳酸急剧升高的最小强度,它是体内有氧代谢向无氧代谢过渡的转折点。小于该强度,有氧代谢占优势;大于该强度则血乳酸急剧上升,无氧酵解占优势。金特曼认为,当血乳酸超过4 mM/L  相似文献   

15.
乳酸脱氢酶LDH是在辅酶I(NAD)或还原型辅酶1(NADH)的存在下,使丙酮酸与乳酸互相转化,起触媒的催化作用.LDH在PH7.2——7.4时主要生成乳酸,在PH8.3——8.8时主要生成丙酮酸,因此,在机体内更加有利于丙酮酸向乳酸的反应.  相似文献   

16.
目的:研究递增负荷运动后肌氧和血乳酸的恢复特点及特征性指标的关联性,探索恢复评价的有效指标与科学化手段.方法:14名赛艇轻量级运动员进行递增负荷运动试验,采用静止休息的方式恢复至安静状态.用近红外光谱术(NIRS)监测运动时及恢复期主动肌氧含量的变化,提取肌氧恢复幅度(H)、半恢复时(TR),计算肌氧半恢复速率(RHbO2).在运动停止后即刻及恢复期测定血乳酸,找出峰值(Blamax)及峰值出现的时间(t)、恢复至30min时的血乳酸浓度(Bla30),计算乳酸清除速率(RBla).结果:肌氧含量与血乳酸的变化与氧化代谢水平和恢复程度相适应.肌氧半恢复速率RHbO2和血乳酸清除速率RBla存在显著的正相关(r=0.791,P<0.01),回归方程存在显著意义.结论:肌氧和血乳酸的变化在内在机制上存在必然的联系,可以反映机体的恢复水平和氧化代谢能力.将RHbO2取代传统指标RBla应用于代谢能力和恢复评价具有可行性;NIRS为训练监控的科学化发展提供了有效的检测手段.  相似文献   

17.
乳酸是葡萄糖或糖原经过糖酵解无氧代谢过程的最终产物。长期以来,乳酸被广泛认为是导致运动能力下降和运动疲劳的代谢废物。然而,近年研究发现,乳酸在机体中具有重要作用:1)乳酸作为能量底物和糖异生前体,不是导致代谢性酸中毒的原因,反而起到缓冲作用;2)乳酸穿梭作用于靶向部位,发挥细胞间信号传导的信使作用;3)乳酸既是脑的重要能源物质,又可以介导运动改善认知和记忆的过程。  相似文献   

18.
心率在乳酸评定中的应用及CONCONI测试   总被引:2,自引:0,他引:2  
在训练和比赛中因强度不同而导致的不同代谢特点可改变机体乳酸浓度,通过刺激化学感受器改变心血管机能的活动从而使心率增加。心率增加有时不受乳酸浓度的影响,只与心脏本身的耗氧有关,从而导致心率的漂移。另一方面,随乳酸浓度的增加对心脏的刺激就增强,但当乳酸浓度的增加达到一定的水平时,心率的变化就会发生改变,从而产生康科尼效应。  相似文献   

19.
由自由基导致的细胞脂质过氧化(LIPOX)可以严重损害细胞的完整性,甚至可以引起细胞的死亡(1)。Ronguist在1982年报道,生物膜上脂质过氧化,尤其在对缺氧组织再灌氧的过程中可以导致细胞功能的一系列变化。这些变化包括细胞膜通透性的提高,肌质网状组织C_a~(2+)转运率的下降,线粒体功能的改变,以及引起其他有毒代谢。在运动中,由于血液的重新分配,有些组织可能缺氧,在氧对组织重新灌注时容易  相似文献   

20.
乳酸是糖代谢(无氧糖酵解)的重要产物。当肌肉活动时,由于氧供应不足而ATP—CP又大量被消耗,糖的无氧代谢便参加供能,从而产生大量乳酸。这些乳酸又通过弥散进入血液中,因此血液中的乳酸含量可做为评定人体无氧代谢能力的一项生化指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号