首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
Session-based recommendation aims to predict items that a user will interact with based on historical behaviors in anonymous sessions. It has long faced two challenges: (1) the dynamic change of user intents which makes user preferences towards items change over time; (2) the uncertainty of user behaviors which adds noise to hinder precise preference learning. They jointly preclude recommender system from capturing real intents of users. Existing methods have not properly solved these problems since they either ignore many useful factors like the temporal information when building item embeddings, or do not explicitly filter out noisy clicks in sessions. To tackle above issues, we propose a novel Dynamic Intent-aware Iterative Denoising Network (DIDN) for session-based recommendation. Specifically, to model the dynamic intents of users, we present a dynamic intent-aware module that incorporates item-aware, user-aware and temporal-aware information to learn dynamic item embeddings. A novel iterative denoising module is then devised to explicitly filter out noisy clicks within a session. In addition, we mine collaborative information to further enrich the session semantics. Extensive experimental results on three real-world datasets demonstrate the effectiveness of the proposed DIDN. Specifically, DIDN obtains improvements over the best baselines by 1.66%, 1.75%, and 7.76% in terms of P@20 and 1.70%, 2.20%, and 10.48% in terms of MRR@20 on all datasets.  相似文献   

2.
In event-based social networks (EBSN), group event recommendation has become an important task for groups to quickly find events that they are interested in. Existing methods on group event recommendation either consider just one type of information, explicit or implicit, or separately model the explicit and implicit information. However, these methods often generate a problem of data sparsity or of model vector redundancy. In this paper, we present a Graph Multi-head Attention Network (GMAN) model for group event recommendation that integrates the explicit and implicit information in EBSN. Specifically, we first construct a user-explicit graph based on the user's explicit information, such as gender, age, occupation and the interactions between users and events. Then we build a user-implicit graph based on the user's implicit information, such as friend relationships. The incorporated both explicit and implicit information can effectively describe the user's interests and alleviate the data sparsity problem. Considering that there may be a correlation between the user's explicit and implicit information in EBSN, we take the user's explicit vector representation as the input of the implicit information aggregation when modeling with graph neural networks. This unified user modeling can solve the aforementioned problem of user model vector redundancy and is also suitable for event modeling. Furthermore, we utilize a multi-head attention network to learn richer implicit information vectors of users and events from multiple perspectives. Finally, in order to get a higher level of group vector representation, we use a vanilla attention mechanism to fuse different user vectors in the group. Through experimenting on two real-world Meetup datasets, we demonstrate that GMAN model consistently outperforms state-of-the-art methods on group event recommendation.  相似文献   

3.
With the information explosion of news articles, personalized news recommendation has become important for users to quickly find news that they are interested in. Existing methods on news recommendation mainly include collaborative filtering methods which rely on direct user-item interactions and content based methods which characterize the content of user reading history. Although these methods have achieved good performances, they still suffer from data sparse problem, since most of them fail to extensively exploit high-order structure information (similar users tend to read similar news articles) in news recommendation systems. In this paper, we propose to build a heterogeneous graph to explicitly model the interactions among users, news and latent topics. The incorporated topic information would help indicate a user’s interest and alleviate the sparsity of user-item interactions. Then we take advantage of graph neural networks to learn user and news representations that encode high-order structure information by propagating embeddings over the graph. The learned user embeddings with complete historic user clicks capture the users’ long-term interests. We also consider a user’s short-term interest using the recent reading history with an attention based LSTM model. Experimental results on real-world datasets show that our proposed model significantly outperforms state-of-the-art methods on news recommendation.  相似文献   

4.
5.
Unsupervised feature selection is very attractive in many practical applications, as it needs no semantic labels during the learning process. However, the absence of semantic labels makes the unsupervised feature selection more challenging, as the method can be affected by the noise, redundancy, or missing in the originally extracted features. Currently, most methods either consider the influence of noise for sparse learning or think over the internal structure information of the data, leading to suboptimal results. To relieve these limitations and improve the effectiveness of unsupervised feature selection, we propose a novel method named Adaptive Dictionary and Structure Learning (ADSL) that conducts spectral learning and sparse dictionary learning in a unified framework. Specifically, we adaptively update the dictionary based on sparse dictionary learning. And, we also introduce the spectral learning method of adaptive updating affinity matrix. While removing redundant features, the intrinsic structure of the original data can be retained. In addition, we adopt matrix completion in our framework to make it competent for fixing the missing data problem. We validate the effectiveness of our method on several public datasets. Experimental results show that our model not only outperforms some state-of-the-art methods on complete datasets but also achieves satisfying results on incomplete datasets.  相似文献   

6.
With the rapid development of social media and big data technology, user’s sequence behavior information can be well recorded and preserved on different media platforms. It is crucial to model the user preference through mining their sequential behaviors. The goal of sequential recommendation is to predict what a user may interact with in the next moment based on the user’s historical record of interactive sequence. However, existing sequential recommendation methods generally adopt a negative sampling mechanism (e.g. random and uniform sampling) for the pairwise learning, which brings the defect of insufficient training to the model, and decrease the evaluation performance of the entire model. Therefore, we propose a Non-sampling Self-attentive Sequential Recommendation (NSSR) model that combines non-sampling mechanism and self-attention mechanism. Under the premise of ensuring the efficient training of the model, NSSR model takes all pairs in the training set as training samples, so as to achieve the goal of fully training the model. Specifically, we take the interactive sequence as the current user representation, and propose a new loss function to implement the non-sampling training mechanism. Finally, the state-of-the-art result is achieved on three public datasets, Movielens-1M, Amazon Beauty and Foursquare_TKY, and the recommendation performance increase by about 29.3%, 25.7% and 42.1% respectively.  相似文献   

7.
Text classification is an important research topic in natural language processing (NLP), and Graph Neural Networks (GNNs) have recently been applied in this task. However, in existing graph-based models, text graphs constructed by rules are not real graph data and introduce massive noise. More importantly, for fixed corpus-level graph structure, these models cannot sufficiently exploit the labeled and unlabeled information of nodes. Meanwhile, contrastive learning has been developed as an effective method in graph domain to fully utilize the information of nodes. Therefore, we propose a new graph-based model for text classification named CGA2TC, which introduces contrastive learning with an adaptive augmentation strategy into obtaining more robust node representation. First, we explore word co-occurrence and document word relationships to construct a text graph. Then, we design an adaptive augmentation strategy for the text graph with noise to generate two contrastive views that effectively solve the noise problem and preserve essential structure. Specifically, we design noise-based and centrality-based augmentation strategies on the topological structure of text graph to disturb the unimportant connections and thus highlight the relatively important edges. As for the labeled nodes, we take the nodes with same label as multiple positive samples and assign them to anchor node, while we employ consistency training on unlabeled nodes to constrain model predictions. Finally, to reduce the resource consumption of contrastive learning, we adopt a random sample method to select some nodes to calculate contrastive loss. The experimental results on several benchmark datasets can demonstrate the effectiveness of CGA2TC on the text classification task.  相似文献   

8.
Deep multi-view clustering (MVC) is to mine and employ the complex relationships among views to learn the compact data clusters with deep neural networks in an unsupervised manner. The more recent deep contrastive learning (CL) methods have shown promising performance in MVC by learning cluster-oriented deep feature representations, which is realized by contrasting the positive and negative sample pairs. However, most existing deep contrastive MVC methods only focus on the one-side contrastive learning, such as feature-level or cluster-level contrast, failing to integrating the two sides together or bringing in more important aspects of contrast. Additionally, most of them work in a separate two-stage manner, i.e., first feature learning and then data clustering, failing to mutually benefit each other. To fix the above challenges, in this paper we propose a novel joint contrastive triple-learning framework to learn multi-view discriminative feature representation for deep clustering, which is threefold, i.e., feature-level alignment-oriented and commonality-oriented CL, and cluster-level consistency-oriented CL. The former two submodules aim to contrast the encoded feature representations of data samples in different feature levels, while the last contrasts the data samples in the cluster-level representations. Benefiting from the triple contrast, the more discriminative representations of views can be obtained. Meanwhile, a view weight learning module is designed to learn and exploit the quantitative complementary information across the learned discriminative features of each view. Thus, the contrastive triple-learning module, the view weight learning module and the data clustering module with these fused features are jointly performed, so that these modules are mutually beneficial. The extensive experiments on several challenging multi-view datasets show the superiority of the proposed method over many state-of-the-art methods, especially the large improvement of 15.5% and 8.1% on Caltech-4V and CCV in terms of accuracy. Due to the promising performance on visual datasets, the proposed method can be applied into many practical visual applications such as visual recognition and analysis. The source code of the proposed method is provided at https://github.com/ShizheHu/Joint-Contrastive-Triple-learning.  相似文献   

9.
Most of the existing GNN-based recommender system models focus on learning users’ personalized preferences from these (explicit/implicit) positive feedback to achieve personalized recommendations. However, in the real-world recommender system, the users’ feedback behavior also includes negative feedback behavior (e.g., click dislike button), which also reflects users’ personalized preferences. How to utilize negative feedback is a challenging research problem. In this paper, we first qualitatively and quantitatively analyze the three kinds of negative feedback that widely existed in real-world recommender systems and investigate the role of negative feedback in recommender systems. We found that it is different from what we expected — not all negative items are ranked low, and some negative items are even ranked high in the overall items. Then, we propose a novel Signed Graph Neural Network Recommendation model (SiGRec) to encode the users’ negative feedback behavior. Our SiGRec can learn positive and negative embeddings of users and items via positive and negative graph neural network encoders, respectively. Besides, we also define a new Sign Cosine (SiC) loss function to adaptively mine the information of negative feedback for different types of negative feedback. Extensive experiments on four datasets demonstrate the proposed model outperforms several existing models. Specifically, on the Zhihu dataset, SiGRec outperforms the unsigned GNN model (i.e., LightGCN), 27.58% 29.81%, and 31.21% in P@20, R@20, and nDCG@20, respectively. We hope our work can open the door to further exploring the negative feedback in recommendations.  相似文献   

10.
The wide spread of false information has detrimental effects on society, and false information detection has received wide attention. When new domains appear, the relevant labeled data is scarce, which brings severe challenges to the detection. Previous work mainly leverages additional data or domain adaptation technology to assist detection. The former would lead to a severe data burden; the latter underutilizes the pre-trained language model because there is a gap between the downstream task and the pre-training task, which is also inefficient for model storage because it needs to store a set of parameters for each domain. To this end, we propose a meta-prompt based learning (MAP) framework for low-resource false information detection. We excavate the potential of pre-trained language models by transforming the detection tasks into pre-training tasks by constructing template. To solve the problem of the randomly initialized template hindering excavation performance, we learn optimal initialized parameters by borrowing the benefit of meta learning in fast parameter training. The combination of meta learning and prompt learning for the detection is non-trivial: Constructing meta tasks to get initialized parameters suitable for different domains and setting up the prompt model’s verbalizer for classification in the noisy low-resource scenario are challenging. For the former, we propose a multi-domain meta task construction method to learn domain-invariant meta knowledge. For the latter, we propose a prototype verbalizer to summarize category information and design a noise-resistant prototyping strategy to reduce the influence of noise data. Extensive experiments on real-world data demonstrate the superiority of the MAP in new domains of false information detection.  相似文献   

11.
General recommenders and sequential recommenders are two modeling paradigms of recommender. The main focus of a general recommender is to identify long-term user preferences, while the user’s sequential behaviors are ignored and sequential recommenders try to capture short-term user preferences by exploring item-to-item relations, failing to consider general user preferences. Recently, better performance improvement is reported by combining these two types of recommenders. However, most of the previous works typically treat each item separately and assume that each user–item interaction in a sequence is independent. This may be a too simplistic assumption, since there may be a particular purpose behind buying the successive item in a sequence. In fact, a user makes a decision through two sequential processes, i.e., start shopping with a particular intention and then select a specific item which satisfies her/his preferences under this intention. Moreover, different users usually have different purposes and preferences, and the same user may have various intentions. Thus, different users may click on the same items with an attention on a different purpose. Therefore, a user’s behavior pattern is not completely exploited in most of the current methods and they neglect the distinction between users’ purposes and their preferences. To alleviate those problems, we propose a novel method named, CAN, which takes both users’ purposes and preferences into account for the next-item recommendation. We propose to use Purpose-Specific Attention Unit (PSAU) in order to discriminately learn the representations of user purpose and preference. The experimental results on real-world datasets demonstrate the advantages of our approach over the state-of-the-art methods.  相似文献   

12.
Graph neural networks (GNNs) have shown great potential for personalized recommendation. At the core is to reorganize interaction data as a user-item bipartite graph and exploit high-order connectivity among user and item nodes to enrich their representations. While achieving great success, most existing works consider interaction graph based only on ID information, foregoing item contents from multiple modalities (e.g., visual, acoustic, and textual features of micro-video items). Distinguishing personal interests on different modalities at a granular level was not explored until recently proposed MMGCN (Wei et al., 2019). However, it simply employs GNNs on parallel interaction graphs and treats information propagated from all neighbors equally, failing to capture user preference adaptively. Hence, the obtained representations might preserve redundant, even noisy information, leading to non-robustness and suboptimal performance. In this work, we aim to investigate how to adopt GNNs on multimodal interaction graphs, to adaptively capture user preference on different modalities and offer in-depth analysis on why an item is suitable to a user. Towards this end, we propose a new Multimodal Graph Attention Network, short for MGAT, which disentangles personal interests at the granularity of modality. In particular, built upon multimodal interaction graphs, MGAT conducts information propagation within individual graphs, while leveraging the gated attention mechanism to identify varying importance scores of different modalities to user preference. As such, it is able to capture more complex interaction patterns hidden in user behaviors and provide a more accurate recommendation. Empirical results on two micro-video recommendation datasets, Tiktok and MovieLens, show that MGAT exhibits substantial improvements over the state-of-the-art baselines like NGCF (Wang, He, et al., 2019) and MMGCN (Wei et al., 2019). Further analysis on a case study illustrates how MGAT generates attentive information flow over multimodal interaction graphs.  相似文献   

13.
Previous federated recommender systems are based on traditional matrix factorization, which can improve personalized service but are vulnerable to gradient inference attacks. Most of them adopt model averaging to fit the data heterogeneity of federated recommender systems, requiring more training costs. To address privacy and efficiency, we propose an efficient federated item similarity model for the heterogeneous recommendation, called FedIS, which can train a global item-based collaborative filtering model to eliminate user feature dependencies. Specifically, we extend the neural item similarity model to the federated model, where each client only locally optimizes the shared item feature matrix. We then propose a fast-convergent federated aggregation method inspired by meta-learning to address heterogeneous user updates and accelerate the convergence of global training. Furthermore, we propose a two-stage perturbation method to protect both local training and transmission while reducing communication costs. Finally, extensive experiments on four real-world datasets validate that FedIS can provide more competitive performance on federated recommendations. Our proposed method also shows significant training efficiency with less performance degradation.  相似文献   

14.
The matrix factorization model based on user-item rating data has been widely studied and applied in recommender systems. However, data sparsity, the cold-start problem, and poor explainability have restricted its performance. Textual reviews usually contain rich information about items’ features and users’ sentiments and preferences, which can solve the problem of insufficient information from only user ratings. However, most recommendation algorithms that take sentiment analysis of review texts into account are either fine- or coarse-grained, but not both, leading to uncertain accuracy and comprehensiveness regarding user preference. This study proposes a deep learning recommendation model (i.e., DeepCGSR) that integrates textual review sentiments and the rating matrix. DeepCGSR uses the review sets of users and items as a corpus to perform cross-grained sentiment analysis by combining fine- and coarse-grained levels to extract sentiment feature vectors for users and items. Deep learning technology is used to map between the extracted feature vector and latent factor through the rating-based matrix factorization model and obtain deep, nonlinear features to predict the user's rating of an item. Iterative experiments on e-commerce datasets from Amazon show that DeepCGSR consistently outperforms the recommendation models LFM, SVD++, DeepCoNN, TOPICMF, and NARRE. Overall, comparing with other recommendation models, the DeepCGSR model demonstrated improved evaluation results by 14.113% over LFM, 13.786% over SVD++, 9.920% over TOPICMF, 5.122% over DeepCoNN, and 2.765% over NARRE. Meanwhile, the DeepCGSR has great potential in fixing the overfitting and cold-start problems. Built upon previous studies and findings, the DeepCGSR is the state of the art, moving the design and development of the recommendation algorithms forward with improved recommendation accuracy.  相似文献   

15.
Recommender Systems (RSs) aim to model and predict the user preference while interacting with items, such as Points of Interest (POIs). These systems face several challenges, such as data sparsity, limiting their effectiveness. In this paper, we address this problem by incorporating social, geographical, and temporal information into the Matrix Factorization (MF) technique. To this end, we model social influence based on two factors: similarities between users in terms of common check-ins and the friendships between them. We introduce two levels of friendship based on explicit friendship networks and high check-in overlap between users. We base our friendship algorithm on users’ geographical activity centers. The results show that our proposed model outperforms the state-of-the-art on two real-world datasets. More specifically, our ablation study shows that the social model improves the performance of our proposed POI recommendation system by 31% and 14% on the Gowalla and Yelp datasets in terms of Precision@10, respectively.  相似文献   

16.
To achieve personalized recommendations, the recommender system selects the items that users may like by learning the collected user–item interaction data. However, the acquisition and use of data usually form a feedback loop, which leads to recommender systems suffering from popularity bias. To solve this problem, we propose a novel dual disentanglement of user–item interaction for recommendation with causal embedding (DDCE). Different from the existing work, our innovation is we take into account double-end popularity bias from the user-side and the item-side. Firstly, we perform a causal analysis of the reasons for user–item interaction and obtain the causal embedding representation of each part according to the analysis results. Secondly, on the item-side, we consider the influence of item attributes on popularity to improve the reliability of the item popularity. Then, on the user-side, we consider the effect of the time series when obtaining users’ interest. We model the contrastive learning task to disentangle users’ long–short-term interests, which avoids the bias of long–short-term interests overlapping, and use the attention mechanism to realize the dynamic integration of users’ long–short-term interests. Finally, we realize the disentanglement of user–item interaction reasons by decoupling user interest and item popularity. We experiment on two real-world datasets (Douban Movie and KuaiRec) to verify the significance of DDCE, the average improvement of DDCE in three evaluation metrics (NDCG, HR, and Recall) compared to the state-of-the-art model are 5.1106% and 4.1277% (MF as the backbone), 3.8256% and 3.2790% (LightGCN as the backbone), respectively.  相似文献   

17.
The rapid development of the web has led to a considerable increase in information dissemination. Recently, personalized web service recommendation has become a popular research area in service computing. Research on web service recommendation systems mainly addresses two problems: prediction and completion of sparse QoS data, and the user's personalized recommendation. To address the issue of high data sparsity and low recommendation accuracy in the traditional service recommendation models under mobile cloud, this study presents a hybrid collaborative filtering model for consumer service recommendation based on mobile cloud by introducing user preferences. The example verified that the service recommendation based on the model can effectively reduce the data sparsity and increase the accuracy of the prediction.  相似文献   

18.
大数据环境下,推荐系统项目评分的稀疏性问题愈加突出,单兴趣表示方法也难以对用户多种情境兴趣进行准确描述,导致推荐结果精度大大降低。鉴于此,提出一种多情境兴趣表示方法,在此基础上构建面向图书馆大数据知识服务的多情境兴趣推荐模型,通过对用户多情境兴趣的层次划分,利用蚁群层次挖掘的优势来发现目标用户的若干最近邻类簇,然后根据类簇内相似用户对目标项目的评分对未评分项目进行预测,最后结合MapReduce化的大数据并行处理方法来进行协同过滤推荐。实验结果表明,多情境兴趣的建模方法改善了单兴趣建模存在的歧义推荐问题,有效缓解了大数据环境下项目评分的数据稀疏问题,MapReduce化的蚁群层次聚类方法也大大改善了推荐系统的运行效率。  相似文献   

19.
针对传统协同过滤技术在图书推荐中效率不高、数据极端稀疏性及主观性强等问题,提出一种基于云填充和蚁群聚类的协同过滤图书推荐方法,首先根据蚁群聚类算法得到用户群分类,然后在进行协同过滤前预先通过云模型填充用户——项目矩阵,以降低数据的稀疏性。实验结果表明,该算法在推荐精度上有明显的提高。  相似文献   

20.
Precise prediction of Multivariate Time Series (MTS) has been playing a pivotal role in numerous kinds of applications. Existing works have made significant efforts to capture temporal tendency and periodical patterns, but they always ignore abrupt variations and heterogeneous/spatial associations of sensory data. In this paper, we develop a dual normalization (dual-norm) based dynamic graph diffusion network (DNGDN) to capture hidden intricate correlations of MTS data for temporal prediction. Specifically, we design time series decomposition and dual-norm mechanism to learn the latent dependencies and alleviate the adverse effect of abnormal MTS data. Furthermore, a dynamic graph diffusion network is adopted for adaptively exploring the spatial correlations among variables. Extensive experiments are performed on 3 real world experimental datasets with 8 representative baselines for temporal prediction. The performances of DNGDN outperforms all baselines with at least 4% lower MAPE over all datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号