首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
This paper deals with the feedback Stackelberg strategies for the discrete-time mean-field stochastic systems in infinite horizon. The optimal control problem of the follower is first studied. Employing the discrete-time linear quadratic (LQ) mean-field stochastic optimal control theory, the sufficient conditions for the solvability of the optimization of the follower are presented and the optimal control is obtained based on the stabilizing solutions of two coupled generalized algebraic Riccati equations (GAREs). Then, the optimization of the leader is transformed into a constrained optimal control problem. Applying the Karush-Kuhn-Tucker (KKT) conditions, the necessary conditions for the existence and uniqueness of the Stackelberg strategies are derived and the Stackelberg strategies are expressed as linear feedback forms involving the state and its mean based on the solutions (Ki,K^i), i=1,2 of a set of cross-coupled stochastic algebraic equations (CSAEs). An iterative algorithm is put forward to calculate efficiently the solutions of the CSAEs. Finally, an example is solved to show the effectiveness of the proposed algorithm.  相似文献   

12.
13.
14.
15.
16.
17.
This paper formulates the pose (attitude and position) estimation problem as nonlinear stochastic filter kinematics evolved directly on the Special Euclidean Group 3 (SE(3)). This work proposes an alternate way of potential function selection and handles the problem as a stochastic filtering problem. The problem is mapped from SE(3) to vector form, using the Rodriguez vector and the position vector, and then followed by the definition of the pose problem in the sense of Stratonovich. The proposed filter guarantees that the errors present in position and Rodriguez vector estimates are semi-globally uniformly ultimately bounded (SGUUB) in mean square, and that they converge to small neighborhood of the origin in probability. Simulation results show the robustness and effectiveness of the proposed filter in presence of high levels of noise and bias associated with the velocity vector as well as body-frame measurements.  相似文献   

18.
19.
20.
Given any finite family of real d-by-d nonsingular matrices {S1,,Sl}, by extending the well-known Li–Yorke chaos of a deterministic nonlinear dynamical system to a discrete-time linear inclusion or hybrid or switched system:
xn{Skxn?1;1kl},x0Rdandn1,
we study the chaotic dynamics of the state trajectory (xn(x0, σ))n ≥ 1 with initial state x0Rd, governed by a switching law σ:N{1,,l}. Two sufficient conditions are given so that for a “large” set of switching laws σ, there exhibits the scrambled dynamics as follows: for all x0,y0Rd,x0y0,
lim infn+xn(x0,σ)?xn(y0,σ)=0andlim supn+xn(x0,σ)?xn(y0,σ)=.
This implies that there coexist positive, zero and negative Lyapunov exponents and that the trajectories (xn(x0, σ))n ≥ 1 are extremely sensitive to the initial states x0Rd. We also show that a periodically stable linear inclusion system, which may be product unbounded, does not exhibit any such chaotic behavior. An explicit simple example shows the discontinuity of Lyapunov exponents with respect to the switching laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号