首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This paper addresses the discrete-time design and performance evaluation of finite-gain multiple resonant controllers for uninterruptible power supplies – UPS. Two discretization methods that preserve the affinity with respect to time-varying parameters are considered to obtain the discrete-time UPS uncertain model. Based on a state-feedback formulation for the proposed controller, a systematic approach for the robust design of controller gains is derived by the solution of a convex optimization problem subject to linear matrix inequality constraints. Simulation and experimental results in a 3.5 kVA inverter are obtained to compare the effects of distinct sampling frequencies and plant discretization methods with respect to the IEC 62040-3 performance parameters.  相似文献   

3.
This paper focuses on the problem of asynchronous non-fragile dissipativity control for a class of switched singularly perturbed systems (SPSs) governed by the persistent dwell-time (PDT) switching mechanism in the discrete-time context. Unlike some previous results, the modes of system and controller in this paper are assumed to be asynchronized, which conforms better with the practical scenarios. Besides, considering the case that the controllers may be affected by uncertain factors and can not be realized accurately during system operation, the non-fragile mechanism is introduced in the process of controller design to enhance the reliability and security of the SPSs. Based on Lyapunov stability theory and stochastic analysis theory, some sufficient conditions are obtained, which can ensure the exponentially mean-square stable (EMSS) and strict dissipative performance of the closed-loop system. Furthermore, the asynchronous non-fragile slow state variables feedback (SSVF) controller gains are obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example and an inverted pendulum model are applied to demonstrate the superiority and the practicability of the developed control mechanism.  相似文献   

4.
In this paper, the networked stabilization of discrete-time periodic piecewise linear systems under transmission package dropouts is investigated. The transmission package dropouts result in the loss of control input and the asynchronous switching between the subsystems and the associated controllers. Before studying the networked control, the sufficient conditions of exponential stability and stabilization of discrete-time periodic piecewise linear systems are proposed via the constructed dwell-time dependent Lyapunov function with time-varying Lyapunov matrix at first. Then to tackle the bounded time-varying packet dropouts issue of switching signal in the networked control, a continuous unified time-varying Lyapunov function is employed for both the synchronous and asynchronous subintervals of subsystems, the corresponding stabilization conditions are developed. The state-feedback stabilizing controller can be directly designed by solving linear matrix inequalities (LMIs) instead of iterative optimization used in continuous-time periodic piecewise linear systems. The effectiveness of the obtained theoretical results is illustrated by numerical examples.  相似文献   

5.
This paper is concerned with the output reachable set estimation for discrete-time switched systems. The switching signal is considered as persistent dwell-time (PDT), which is more general and flexible compared with the common dwell-time and average dwell-time switching. The estimation of output reachable set is determined by a collection of bounding ellipsoids based on a family of quasi-time-dependent (QTD) Lyapunov functions. Furthermore, a set of non-fragile QTD controllers is designed. Finally, two examples are employed to illustrate the potentials of proposed methods.  相似文献   

6.
This paper investigates the global stabilization of discrete-time linear systems with input time delay by bounded controls. Based on some special canonical forms containing time delays both in its input and state, two special discrete-time linear systems---multiple integrators and oscillators are first considered. The global stabilizing controllers are respectively established, and moreover, explicit conditions are established to guarantee the stability of the closed-loop systems. Subsequently, a concise design method is proposed for globally stabilizing general discrete-time linear system by combining the design methods for multiple integrators and oscillators. The designed controller is in the explicit form with explicit stability conditions being given, and thus is easier to use than the existing results. Finally, numerical simulations illustrate the effectiveness of the proposed approaches.  相似文献   

7.
This paper deals with the problems of finite-time stability and stabilization for continuous-time switched positive linear time-delay systems under mode-dependent average dwell time switching signals. First, finite-time stability conditions are established by constructing an multiple piecewise copositive Lyapunov–Krasovskii functional. Then, finite-time stabilization is achieved by designing a state-feedback controller in the form of linear programming. This numerical construction approach proposed for controller cancels the restriction of the multiple piecewise copositive Lyapunov–Krasovskii functional on controllers, which can decrease the conservatism. Finally, two numerical examples are given to show the advantages of our methods.  相似文献   

8.
This paper investigates the problem of stability and state-feedback control design for linear parameter-varying systems with time-varying delays. The uncertain parameters are assumed to belong to a polytope with bounded known variation rates. The new conditions are based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alternative parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative is handled using recent integral inequalities for quadratic functions proposed in the literature. As main results, a novel sufficient stability condition for delay-dependent systems as well as a new sufficient condition to design gain-scheduled state-feedback controllers are stated. In the new proposed methodology, the Lyapunov matrices and the system matrices are put separated making it suitable for supporting in a new way the design of the stabilization controller. An example, based on a model of a real-world problem, is provided to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper is concerned with stability analysis and stabilization of time-varying delay discrete-time systems in Lyapunov-Krasovskii stability analysis framework. In this regard, a less conservative approach is introduced based on non-monotonic Lyapunov-Krasovskii (NMLK) technique. The proposed method derives time-varying delay dependent stability conditions based on Lyapunov-Krasovskii functional (LKF), which are in the form of linear matrix inequalities (LMI). Also, a PID controller designing algorithm is extracted based on obtained NMLK stability condition. The stability of the closed loop system is guaranteed using the designed controller. Another property that is important along with the stability, is the optimality of the controller. Thus, an optimal PID designing technique is introduced in this article. The proposed method can be used to design optimal PID controller for unstable multi-input multi-output time-varying delay discrete-time systems. The proposed stability and stabilization conditions are less conservative due to the use of non-monotonic decreasing technique. The novelty of the paper comes from the consideration of non-monotonic approach for stability analysis of time-varying delay discrete-time systems and using obtained stability conditions for designing PID controller. Numerical examples and simulations are given to evaluate the theoretical results and illustrate its effectiveness compared to the existing methods.  相似文献   

10.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

11.
In this paper, the problem of delay-dependent non-fragile robust H∞H control for a class of discrete-time singular systems with state-delay and parameter uncertainties is investigated. Based on singular value decomposition approach, a delay-dependent sufficient condition for the H∞H control problem for a class of discrete-time singular systems is proposed by constructing generalized Lyapunov–Krasovskii function and a new difference inequality. A memoryless state feedback controller under controller gain perturbations is designed, which guarantees that, for all admissible uncertainties, the resultant closed-loop system is regular, causal, and stable with an H∞H norm bound constraint. Numerical examples in the last will show that our results have the better performance in conservativeness than some results reported in the literature.  相似文献   

12.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

13.
This paper investigates the finite-time control problems for a class of discrete-time nonlinear singular systems via state undecomposed method. Firstly, the finite-time stabilization problem is discussed for the system under state feedback, and a finite-time stabilization controller is obtained. Then, based on which, the finite-time H boundedness problem is studied for the system with exogenous disturbances. Finally, an example of population distribution model is presented to illustrate the validity of the proposed controller. Because there is no any constraint for singular matrix E in the paper, controllers can be designed for more discrete-time nonlinear singular systems.  相似文献   

14.
This paper considers the sliding mode control (SMC) problem of a class of uncertain Markovian jump systems, in which there exist randomly occurring parameter uncertainties and random gain variations in the controller. By introducing two independent random variables obeying Bernoulli distribution, the random characteristics of parameter uncertainties and controller gain variations are described. A mode-dependent sliding surface is constructed, and then, the non-fragile SMC scheme is synthesized such that the specified sliding surface is reached in finite time. Furthermore, the stochastic finite-time boundedness over both the reaching and sliding stages are ensured simultaneously under some sufficient conditions. Finally, the developed non-fragile SMC approach is verified by a practical example.  相似文献   

15.
This paper deals with the simultaneous coordinated design of power system stabilizer (PSS) and the flexible ac transmission systems (FACTS) controller. The problem of guaranteed cost reliable control with regional pole constraint against actuator failures is investigated. The state feedback controllers are designed to guarantee the closed loop system satisfying the desired pole region, thus achieving satisfactory oscillation damping and settling time, and having the guaranteed cost performance simultaneously. The proposed controllers satisfy desired dynamic characteristics even in faults cases. The controller's parameters are obtained using the linear matrix inequalities (LMI) optimization. Simulation results validate the effectiveness of this approach.  相似文献   

16.
The paper proposes a method for structured state-feedback controllers design for linear time-invariant systems. A necessary and sufficient condition for structured state-feedback stabilizability of linear systems, making an appeal to the linear-quadratic (LQ) regulator theory, is first proposed. The latter is presented in the form of a nonlinear matrix equation. Then, it is recast as a nonsmooth unconstrained equation using projection onto the positive semi-definite matrices cone. Thereby, a nonsmooth Newton’s iterative algorithm, based on the Clarke generalized Jacobian of said projection, is proposed. This method has a guaranteed local convergence. Finally, numerical examples illustrate the effectiveness of the proposed method.  相似文献   

17.
This paper is concerned with the problems of reachable set estimation and state-feedback controller design for linear systems with distributed delays and bounded disturbance inputs. The disturbance inputs are assumed to be either unit-energy bounded or unit-peak bounded. First, based on the Lyapunov–Krasovskii functional approach and the delay-partitioning technique, delay-dependent conditions for estimating the reachable set of the considered system are derived. These conditions guarantee the existence of an ellipsoid that contains the system state under zero initial conditions. Second, the reachable set estimation is taken into account in the controller design. Here, the purpose is to determine an ellipsoid and find a state-feedback controller such that the determined ellipsoid contains the reachable set of the resulting closed-loop system. Sufficient conditions for the solvability of the control synthesis problem are obtained. Based on these results, the problem of how to design a controller such that the state of the resulting closed-loop system is contained in a prescribed ellipsoid is studied. Finally, numerical examples and simulation results are provided to show the effectiveness of the proposed analysis and design methods.  相似文献   

18.
This paper studies the robust stabilization problem of a class of uncertain Lipschitz nonlinear systems with infinite distributed input delays. A novel robust predictor feedback controller is developed and the controller gain can be obtained via solving a linear matrix inequality. It is shown that the proposed robust predictor feedback controller can globally exponentially stabilize the concerned uncertain nonlinear system with infinite distributed input delays. The key to the proposed approach is the development of several new quadratic Lyapunov functionals. The obtained results are extended to the case of systems with both multiple constant input delays and infinite distributed input delays. It is noted that the obtained results include some existing results on systems with constant input delays or bounded distributed input delays as special cases. Finally, two examples of Chua’s circuit and spacecraft rendezvous system are presented to illustrate the effectiveness of the proposed robust controllers.  相似文献   

19.
This paper investigates globally bounded consensus of leader-following multi-agent systems with unknown nonlinear dynamics and external disturbance via adaptive event-triggered fuzzy control. Different from existing works where filtering and backstepping techniques are applied to design controllers and event-triggered conditions, a matrix inequality is established to obtain the feedback gain matrix and event-triggered functions. To save communication resources, a new distributed event-triggered controller with fully discontinuous communication among following agents is designed. Meanwhile, a strictly positive minimum of inter-event time is provided to exclude Zeno behavior. Furthermore, to achieve globally bounded leader-following consensus, an adaptive fuzzy approximator and a parameter estimator are designed to approximate the unknown nonlinear dynamics and parameters, respectively. Finally, the effectiveness of the proposed method is validated via a simulation example.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号