首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the effects of SAW on the cells’ viability, proliferation, and differentiation. Fluorescence-labeled osteoblast-like cells were seeded into polycaprolactone scaffolds using the SAW method with a static method as a control. The cell distribution in the scaffold was assessed through image analysis. The cells were far more uniformly driven into the scaffold with the SAW method compared to the control, and the seeding process with SAW was also significantly faster: Cells were delivered into the scaffold in seconds compared to the hour-long process of static seeding. Over 80% of the osteoblast-like cells were found to be viable after being treated with SAW at 20 MHz for 10–30 s with an applied power of 380 mW over a wide range of cell suspension volumes (10–100 μℓ) and cell densities (1000–8000 cells∕μℓ). After determining the optimal cell seeding parameters, we further found that the treated cells offered the same functionality as untreated cells. Taken together, these results show that the SAW method has significant potential as a practical scaffold cell seeding method for tissue and orthopedic engineering.  相似文献   

2.
This paper reports the improvement of rectification effects in diffuser∕nozzle structures with viscoelastic fluids. Since rectification in a diffuser∕nozzle structure with Newtonian fluids is caused by inertial effects, micropumps based on this concept require a relatively high Reynolds numbers and high pumping frequencies. In applications with relatively low Reynolds numbers, anisotropic behavior can be achieved with viscoelastic effects. In our investigations, a solution of dilute polyethylene oxide was used as the viscoelastic fluid. A microfluidic device was fabricated in silicon using deep reactive ion etching. The microfluidic device consists of access ports for pressure measurement, and a series of ten diffuser∕nozzle structures. Measurements were carried out for diffuser∕nozzle structures with opening angles ranging from 15° to 60°. Flow visualization, pressure drop and diodicity of de-ionized water and the viscoelastic fluid were compared and discussed. The improvement of diodicity promises a simple pumping concept at low Reynolds numbers for lab-on-a-chip applications.  相似文献   

3.
Meng L  Cai F  Zhang Z  Niu L  Jin Q  Yan F  Wu J  Wang Z  Zheng H 《Biomicrofluidics》2011,5(4):44104-4410410
A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications.  相似文献   

4.
We present a straightforward and rapid surface acoustic wave (SAW) atomization-based technique for encapsulating proteins into 10 μm order particles composed of a biodegradable polymeric excipient, using bovine serum albumin (BSA) as an exemplar. Scans obtained from confocal microscopy provide qualitative proof of encapsulation and show the fluorescent conjugated protein to be distributed in a relatively uniform manner within the polymer shell. An ELISA assay of the collected particles demonstrates that the BSA survives the atomization, particle formation, and collection process with a yield of approximately 55%. The SAW atomization universally gave particles with a textured morphology, and increasing the frequency and polymer concentration generally gave smaller particles (to 3 μm average) with reduced porosity.  相似文献   

5.
This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU−1. Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry–Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10−9 RIU, two orders higher than the best results of current methods.  相似文献   

6.
Electro-osmotic flow (EOF) pumps are attractive for fluid manipulation in microfluidic channels. Open channel EOF pumps can produce high pressures and flow rates, and are relatively easy to fabricate on-chip or integrate with other microfluidic or electrical components. An EOF pump design that is conducive to on-chip fabrication consists of multiple small channel arms feeding into a larger flow channel. We have fabricated this type of pump design using a thin film deposition process that avoids wafer bonding. We have evaluated pumps fabricated on both silicon and glass substrates. Consistent flow rate versus electric field were obtained. For the range of 40–400 V, flow rates of 0.19–2.30 μL∕min were measured. Theoretical calculations of pump efficiency were made, as well as calculations of the mechanical power generated by various pump shapes, to investigate design parameters that should improve future pumps.  相似文献   

7.
Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X–4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.  相似文献   

8.
We present a microfluidic approach to characterizing temperature-dependent biomolecular interactions. Solvated L-arginine vasopressin (AVP) and its immobilized RNA aptamer (spiegelmer) were allowed to achieve equilibrium binding in a microchip at a series of selected temperatures. Unbound AVP were collected and analyzed with matrix-assisted laser desorption∕ionization mass spectrometry (MALDI-MS), yielding melting curves that reveal highly temperature-dependent zones in which affinity binding (36–45 °C) or dissociation (25–33 °C and 50–65 °C) occurs. Additionally, temperature-dependent binding isotherms were constructed; from these, thermodynamic quantities involved in binding were extracted. The results illustrated a strong change in heat capacity of interaction for this system, suggesting a considerable thermodynamic influence controlling vasopressin-spiegelmer interaction.  相似文献   

9.
Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW.  相似文献   

10.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

11.
The introduction of surface acoustic wave (SAW) technology on microfluidics has shown its powerfully controlling and actuating fluid and particle capability in a micro-nano scale, such as fluid mixing, fluid translation, microfluidic pumping, microfluidic rotational motor, microfluidic atomization, particle or cell concentration, droplet or cell sorting, reorientation of nano-objects, focusing and separation of particles, and droplet jetting. The SAW-driven droplet jetting technology enjoys the advantages of simple structure to fabricate with little hindrance, compact size to integrate with other components, high biocompatibility with biological cells or other molecule samples, large force in realizing fast fluidic actuation, and contact-free manipulation with fluid. The realization of this technology can effectively overcome some bottleneck problems in the current micro-injection technology, such as mechanical swear, complicated and bulky structure, and strict limitation of requirements on fluidic characteristics. This article reviews and reorganizes SAW-microfluidic jetting technology from decades of years, referring to the interaction mechanism theory of SAW and fluid, experimental methods of SAW-microfluidic jetting, effects of related parameters on objected pinch-off droplets, and applications of individual structures. Finally, we made a summary of the research results of the current literature and look forward and appraise where this discipline of SAW-microfluidic jetting could go in the future.  相似文献   

12.
In this paper, a poly(dimethylsiloxane) microchip with amperometric detector was developed for the electrophoretic separation and determination of neurotransmitters. For increasing the separation efficiency, the microchannel is modified by polystyrene sulphonate∕polystyrene nano-sphere self-assembly coating. A stable electro-osmotic flow (EOF) and higher separation efficiency are obtained in proposed modified microchannel. Under optimized conditions, dopamine, epinephrine, catechol, and serotonin are acceptably baseline separated in this 3.5 cm length separation channel with the theoretical plate number from 4.6 × 104 to 2.1 × 105 per meter and resolution from 1.29 to 12.5. The practicability of proposed microchip is validated by the recovery test with cerebrospinal fluid as real sample which resulted from 91.7% to 106.5%.  相似文献   

13.
Li Y  Fu YQ  Brodie SD  Alghane M  Walton AJ 《Biomicrofluidics》2012,6(1):12812-128129
This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixing and ejection, as well as for sensing using a shear-horizontal wave SAW device. A SAW induced force has also been employed to enhance the EWOD droplet splitting function.  相似文献   

14.
Multi-target pathogen detection using heterogeneous medical samples require continuous filtering, sorting, and trapping of debris, bioparticles, and immunocolloids within a diagnostic chip. We present an integrated AC dielectrophoretic (DEP) microfluidic platform based on planar electrodes that form three-dimensional (3D) DEP gates. This platform can continuously perform these tasks with a throughput of 3 μL∕min. Mixtures of latex particles, Escherichia coli Nissle, Lactobacillus, and Candida albicans are sorted and concentrated by these 3D DEP gates. Surface enhanced Raman scattering is used as an on-chip detection method on the concentrated bacteria. A processing rate of 500 bacteria was estimated when 100 μl of a heterogeneous colony of 107 colony forming units ∕ml was processed in a single pass within 30 min.  相似文献   

15.
Jena RK  Yue CY 《Biomicrofluidics》2012,6(1):12822-1282212
This report studies the surface modification of cyclic olefin copolymer (COC) by 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer using photografting technique for the purpose of biointerface applications, which demonstrate resistance to both protein adsorption and cell adhesion in COC-based microfluidic devices. This is essential because the hydrophobic nature of COC can lead to adsorption of specific compounds from biological fluids in the microchannel, which can affect the results during fluidic analysis and cause clogging inside the microchannel. A correlation was found between the irradiation time and hydrophobicity of the modified substrate. Static water contact angle results show that the hydrophilicity property of the MPC-grafted substrate improves with increasing irradiation time. The contact angle of the modified surface decreased to 20 ± 5° from 88 ± 3° for the untreated substrate. The surface characterization of the modified surface was evaluated using x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR spectroscopy). Attenuated total reflection-FTIR and XPS results show the presence of the phosphate group (P-O) on modified COC substrates, indicating that the hydrophilic MPC monomer has successfully grafted on COC. Finally, it was demonstrated that cell adhesion and protein adsorption on the MPC modified COC specimen has reduced significantly.  相似文献   

16.
A focusing-based microfluidic mixer was studied. The micromixer utilizes the focusing process required for cytometry to reduce the diffusion distance of molecules to be mixed in order to facilitate the passive diffusion-controlled mixing process. It was found that both the high flow rate ratio of the sheath flow to the flows to be mixed and the low flow rate of the mixing fluids resulted in the short mixing length required within the microfluidic channel. It was shown that a complete mixing was achieved within a distance of 4 mm in the micromixer for the focused mixing fluids at a flow rate of 2 μl∕min and a flow rate ratio of the sheath flow to the flows to be mixed at 4:1. The mixer described here is simple and can be easily fabricated and controlled.  相似文献   

17.
Focusing cells into a single stream is usually a necessary step prior to counting and separating them in microfluidic devices such as flow cytometers and cell sorters. This work presents a sheathless electrokinetic focusing of yeast cells in a planar serpentine microchannel using dc-biased ac electric fields. The concurrent pumping and focusing of yeast cells arise from the dc electrokinetic transport and the turn-induced ac∕dc dielectrophoretic motion, respectively. The effects of electric field (including ac to dc field ratio and ac field frequency) and concentration (including buffer concentration and cell concentration) on the cell focusing performance were studied experimentally and numerically. A continuous electrokinetic filtration of E. coli cells from yeast cells was also demonstrated via their differential electrokinetic focusing in a serpentine microchannel.  相似文献   

18.
In this paper a method of electrospinning conducting and nonconducting biphasic Janus nanofibers using microfluidic polydimethylsiloxane (PDMS)-based manifolds is described. Key benefits of using microfluidic devices for nanofiber synthesis include rapid prototyping, ease of fabrication, and the ability to spin multiple Janus fibers in parallel through arrays of individual microchannels. Biphasic Janus nanofibers of polyvinylpyrrolidone (PVP)+polypyrrole (PPy)∕PVP nanofibers with an average diameter of 250 nm were successfully fabricated using elastomeric microfluidic devices. Fiber characterization and confirmation of the Janus morphology was subsequently carried out using a combination of scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy.  相似文献   

19.
Dammann C  Nöding B  Köster S 《Biomicrofluidics》2012,6(2):22009-2200910
The structure and function of biological systems, for example, cells and proteins, depend strongly on their chemical environment. To investigate such dependence, we design a polydimethylsiloxane-based microfluidic device to encapsulate biological systems in picoliter-sized drops. The content of each individual drop is tuned in a defined manner. As a key feature of our method, the individual chemical composition is determined and related to the drop content. In our case, the drop content is imaged using microscopy methods, while the drops are immobilized to allow for long-time studies. As an application of our device, we study the influence of divalent ions on vimentin intermediate filament networks in a quantitative way by tuning the magnesium concentration from drop to drop. This way we are able to directly image the effect of magnesium on the fluorescently tagged protein in a few hundreds of drops. Our study shows that with increasing magnesium concentration in the drops, the compaction of the networks becomes more pronounced. The degree of compaction is characterized by different morphologies; freely fluctuating networks are observed at comparatively low magnesium concentrations of 5–10 mM, while with increasing magnesium concentration reaching 16 mM they develop into fully aggregated networks. Our approach demonstrates how a systematic study of interactions in biological systems can benefit from the exceptional controllability of microfluidic methods.  相似文献   

20.
Chen A  Pan T 《Biomicrofluidics》2011,5(4):46505-465059
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego® building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号