首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有向线段(其中P_1(x_1,y_1),P_2(x_2,y_2))的定分点坐标公式是,这是一个结构整齐,对称,数学美感强的公式,当且仅当λ>0时,分点位于p_1,p_2之间;当且仅当λ<0且λ≠-1时,分点位于的延长线上或反向延长线上,或者退缩为一点。  相似文献   

2.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

3.
设A(x1,y1),B(x2,y2),点P(x,y)分有向线段AB所成的比为,即AP=λPB,(λ≠-1),则有x=x1+λx2/1+λ,y=y1+y2/1+λ,且当P为内分点时,λ〉0,当P为外分点时λ〈0(λ≠-1),当P与A重时,λ=0,当P与B重合时,λ不存在,这就是定比分点公式.应用定比分点公式,能使许多问题化难为易,化繁为简.有关该公式在几何中的应用,同学们已经比较熟悉.本文再给出该公式在非几何问题中的若干应用,使我们进一步体味数学解题的简洁美.  相似文献   

4.
定比分点是高中数学中的一个重要概念:设P1,P2是直线l上的两点,点P是l上不同于P1,P2的任意一点,则存在一个实数λ,使(P1P→)=λ(→PP2),λ叫做点P分有向线段P1P2所成的比,显然λ具有性质:λ≠0且λ≠-1;点P在线段(P1P2→)上(P为P1P2的内分点)的充要条件是λ>0;点P在线段P1P2或P2P1的延长线上(P为P1P2的外分点)的充要条件是λ<0.  相似文献   

5.
数形结合是中学数学思维的基本形式,解析几何是数形结合的典范,我们结合教学实践,举例说明解几知识在解证三角问题中的应用。一、运用定比分点性质解题在解析几何中,当点P为有向线段P_1P_2的内分点(或外分点)时,点P分P_1P_2所成的比λ=(P_1P)/(PP_2)为正值(或负值),利用定比分点的这个性质可以解某些三角题。  相似文献   

6.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

7.
有向线段的定比分点公式是一个结构整齐、富于对称的公式.当λ趋向于-1时,P趋向于无穷远点;当λ>0时,P为内分点;当λ<0时,P为外分点;当λ=0时,P与P1重合;当P与P2重合时,λ不存在.定比分点公式不但在解析几何中有十分广泛的应用,而且对于一些代数问题,若能恰当运用,也可以拓宽解题思路,开阔视野,培养创造性思维.下面举例说明定比分点公式在代数中的应用.  相似文献   

8.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

9.
解几中的定比分点坐标公式的特殊情况:P_1,P_2是数轴上两点,其坐标分别为x_1,x_2,若数轴上点p分线段p_1P_2之比/=λ,则点p的坐标x=(x_1 λx_2)/(1 λ),其中当且仅当P为P_1P_2的内分点时λ>0。不妨  相似文献   

10.
证明几何题 ,我们一般常采用综合分析法 ,这确是行之有效的重要方法 ,但在证明过程中有时却过于复杂 ,不易理解 .而用解析法来证明就可以简化证明 ,且思路清晰易于理解 .下面利用线段的定比分点公式来解决一些几何题目 .线段定比分点公式 :用点的径向量表示 :对于有向线段P1P2 (P1≠P2 ) ,如果点P满足P1P=λ·PP2 (λ≠ -1 ) ,则称点P是把有向线段P1P2 分成定比为λ的分点 ,O是空间任意一点 ,则OP =OP1+λOP21 +λ .例 1 如图 1 ,设△ABC的三个顶点为A、B、C ,同一平面上有一点P ,今取Q、R、S ,使PC∶CQ …  相似文献   

11.
盛茜 《考试周刊》2014,(72):71-73
<正>在高三数学教学中,在复习《直线与圆》这个章节时经常会遇到一些定点定值类的问题,在这些问题中有一种情形就是著名的阿波罗尼斯圆问题,下面我们就来揭开它神秘的面纱.一、阿波罗尼斯圆定义在平面上给定相异两点A,B,设P点在同一平面上且满足PA PB=λ,当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆.这个结论称作阿波罗尼斯轨迹定理.设M,N分别为线段AB按定比λ分割的内分点和外分点,则MN为阿波罗  相似文献   

12.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

13.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

14.
定比分点的向量式:图1如图1,一般地,若P是分线段P1P2成定比λ的分点(即P1P=λPP2,λ≠-1)则OP=1 1λOP1 1 λλOP2.证明:设O为平面上任意一点,若P1P=λPP2.则OP-OP1=λ(OP2-OP)=λOP2-λOP∴(1 λ)OP=OP1 λOP2即OP=1 1λOP1 1 λλOP2.特别地,当λ=1时,点P是线段P1P2的中点,则OP=21(OP1 OP2)称为线段P1P2中点P的向量表达式.变式:一般地,若P、P1、P2三点共线,且P1P=nmPP2,O为任意一点,则OP=nOP1m mnOP2图2应用例析:一、探求点的坐标【例1】如图2,△ABC顶点A(1,1),B(-2,10),C(3,7),∠BAC平分线交BC边于D,求…  相似文献   

15.
设平面上两点P_1、P_2的连线交直线ι于点M(P_2点不在直线ι上),则称λ=P_1M/MP_2 为此直线ι对于线段P_1P_2的分割比,当λ>0时为内分割,λ<0时为外分割,λ=0时,ι通过P_1点.  相似文献   

16.
有向线段P1P和PP2 数量的比叫做点P分P1P2所成的比 ,通常用λ表示这个比值 ,λ =P1PPP2 ,点P叫做P1P2 的定比分点 .若点P为P1P2 的内分点 ,则λ>0 ;若点P为P1P2 的外分点 ,则λ <0且λ≠ - 1;若P与P1重合 ,则λ =0 .我们可根据λ取值的正负来讨论P的位置 ,也可根据P的位置来讨论λ.下面举例说明 .例 1 已知P(3,- 1)、M(6 ,2 )、N(- 3,3) ,直线l过P点且与线段MN相交 ,求直线l的倾斜角的取值范围 .解 设l交MN于Q(xq,yq) ,又设l的方程为y+1=k(x- 3) ,λ =NQQM ,由定比分点公式得xq =- 3+6…  相似文献   

17.
我们知道,若设点P分有向线段→P1P2所成的比为λ,则有(Ⅰ)λ>0时,P内分→P1P2;(Ⅱ)λ<0(λ≠-1)时,P外分→P1P2;(Ⅲ)λ=0时P与P1重合;(Ⅳ)P与P2重合时,λ不存在.  相似文献   

18.
设点P1(x1,y1)、P2(x2,y2)和P(x,y),若P1P=λPP2(λ≠-1)则有x=x1 λx21 λ,y=y1 λy21 λ.显然点P在P1、P2的连线上,且当λ>0时,P在P1、P2之间;当λ<0时,P在线段P1P2外;当λ=0时,P与P1重合.上述结果就是定比分点公式之内容.众所周知,定比分点公式是解析几何中最基本的公式之一,其关键是λ的确定.由此出发,我们若能恰当地设置λ,不仅能使问题化难为易,而且能体味其解法的简洁美.下面举例说明定比分点公式的若干应用.1 求解函数的值域例1 求函数y=1 3x 11-x 1的值域.解 令λ=-x 1,则λ≤0,依题意有y=1 (-3)λ1 λ,这样λ就是点P(y…  相似文献   

19.
设P_1、P_2是直线l上的两点,点P是l上不同于P_1、P_2的任意一点,则存在一个实数λ,使(?)=λ(?),λ叫做点P分有向线段(?)所成的比,记为λ=(?).若P_1(x_1,y_1)、P_2(x_2,y_2)、  相似文献   

20.
1 知识探究 1) 线段的定比分点 设P1与P2是直线l上的两点,点P为直线l上不同于P1、P2的任意一点,若存在一个实数λ,使得→P1P=λ→PP2,则λ叫做P分有向线段→P1P2所成的比,P点叫做有向线段→P1P2的定比分点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号