首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在分解因式时,有时遇到的多项式中,不止一个字母,若认定其中某一个字母为主元,按降幂排列,便会发现有公因式可提或可利用公式,给分解带来方便,请看下面的例子.例1 分解因式 bc(b+c)+ac(c-a)-ab(a+b).解选取 b 为主元,整理,得原式=(c-a)b~2+(c~2-a~2)b+ac(c-a)=(c-a)[b~2+(c+a)b+ac]  相似文献   

2.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

3.
三角形之外接圆半径与内切圆直径间的关系R≥2r的已有证明比较复杂,本文给出一个较简单的证法,进而解有关问题。为应用方便,有关结论以命题形式出现。命题1 三角形外接圆半径与内切圆半径之积的2倍,等于这个三角形的三边之积与三边之和的比。证明:∵S_△=1/2r(a b c),即2r=4S_△/(a b c)又∵S_△=(abc)/4R,即R=(abc)/4S_△。故2rR=(abc)/(a b c)。命题2 若三角形的三边为a、b、c,则abc≥(a b-c)(a c-b)(b c-a)。证明:∵abc-(a b-c)(a c-b)(b c-a)=abc-(a~2b a~2c b~2a b~2c c~2a c~2b-  相似文献   

4.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

5.
用恒等式解题,大体上有两个途径:一是应用已知的基本恒等式求解;二是根据问题的特点推证出一个适用的恒等式,这通常需要相当高的运算技巧和能力.例1设a、b、c都是正数,满足条件(a2 b2 c2)2>2(a4 b4 c4).求证:a、b、c一定是某个三角形的三边长.证明先把条件改成2a2b2 2b2c2 2c2a2-a4-b4-c4>0.应用恒等式(这是一个较常见的因式分解)2(a2b2 b2c2 c2a2)-a4-b4-c4=(a b c)(a b-c)(b c-a)(c a-b),得(a b c)(a b-c)(b c-a)(c a-b)>0,即(a b-c)(b c-a)(c a-b)>0.若上式左边有两个因式为负(另一个因式为正),例如,若a b-c<0,b c-a<0,两式相加得b<0,这…  相似文献   

6.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

7.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

8.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

9.
在初中《代数》第二册第7.5节分组分解法中第120页上的例1,给出了如下解法: 例1 把a~2-ab ac-bc分解因式。解:a~2-ab ac-bc =(a~2-3b) (ac-bc) =a(a-b) c(a-b) =(a-b)(a c) 当然,此例还可有其它不同的分组分解方法。但学生往往容易产生这样一种错觉:此例除了采用分组分解法之外,别无它法。然而事实上并非如此。此例还可以用课本7.6节要讲的“十字相乘法”求解(但7.6节中并无这样的例子)。具体解法如下: 解:a~2-ab ac-bc =a~2 (c-b)a-bc (看成关于a的二次三项式) =(a-b)(a c) 一般来说,凡适合分组分解法进行因式分解的多项式,如能整理成某个字母的二次三项式,则均可采用“十字相乘法”进行因式分解。例如课本第122~123页上的例4~6,把m~2 5n-mn-5m,x~2-y~2 ax ay,a~2-2ab b~2-c2分解因式,实际  相似文献   

10.
IMO24-6是:已知a,b,c为三角形三边,则 a~2b(a-b) b~2c(b-c) c~2a(c-a)≥0。 (1) (1)的一个等价形式是  相似文献   

11.
文[1]提到这样一组题:已知a,b,c为正数,求证: (1)(a~2 b~2 ab)~(1/2) (b~2 c~2 bc)~(1/2)>(c~2 a~2 ca)~(1/2); (2)(a~2 b~2)~(1/2) (b~2 c~2)>(c~2 a~2)~(1/2); (3)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)>(c~2 a~2-ca)~(1/2); (4)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)≥(c~2 a~2-ca)~(1/2). 并巧妙地利用复数证明了(4)。受文[1]的启发,本文将给出上述各不等式的构图证明,以及两个一般性的结论。 在下文中,记OA=a,OB=b,OC=c。 证明 (1)如图1,设∠AOB=∠BOC=∠COA=(2π)/3,由余弦定理知AB=(a~2 b~2 ab);…,再由AB BC>CA知  相似文献   

12.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

13.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

14.
设a、b、c∈R ,求证: a~3 b~3 c~3≥3abc a(b-c)~2 b(C-a)~2 c(a-b)~2。 这个不等式是著名不等式a~3 b~3 c~3≥3abc的一个加强,在中学数学杂志上曾引起了一些讨论。它的等价形式曾作为瑞典1983年的竞赛试题:若a、b、c∈R~ ,求证:abc≥(-a b c)(a-b C)(a b-c) (1) 联想到(1)的右端与海伦公式的相似之处,本文将(1)进一步加强为:  相似文献   

15.
1986年献礼     
1.若(a b)/(a-b)=(b c)/(b-c)=(c a)/(c-a) 求证:|a~(1986)|=|b~(1986)|=|c~(1986)| 【证明】:由条件(*)知a、b、c两两不等,且abc≠0,对(*)式用合分比定理得a/b=b/c=c/a=x≠1从而c=ax,b=cx=ax~2,a=bx=ax~3 ∴ x~3=1,可见x是1的立方虚根w或w~2。∴ c=aw,b=xw~2或c=aw~2,b=aw~4=aw, 于是|a~(1986)|=|(aw~2)~(1986)|=|(aw)~(1986)| 故|a~(1986)|=|b~(1986)|=|c~(1986)| 2.证明:是合数【证明】:=10~(1986)-1/9=(10~(993))~2-1/9=((10~(993) 1)(10~(993)-1))/9  相似文献   

16.
在课本、习题集及许多资料中,经常可以看到这样一道习题: 已知:a、b、c(R,且a+b+c=M(M=1是它的特殊情形),求证:a~2+b~2+c~2≥(M~2)/3。它的证法很多,常见的有:构造二次函数法,利用柯西不等式、平均值代换法、利用等式:3(a~2+b~2+c~2)=(a+b+c)~2+(a-b)~2+(b-c)~2+(c-a)~2等  相似文献   

17.
本刊1983年第3期“数学问题”栏里有这样一道题:“方程x~3+y~3-3xy+1=0,的图形是什么?作出此图形。”仔细思考,耐人寻味。如果稍作些考察、对比、联想,我们可以发现问题中方程等号左边式子的形式特征酷似我们在初中曾经接触过的问题:“因式分解a~3+b~3+c~3-3abc”。 a~3+b~3+c~3-3abc=(a+b+c)(a~2+b~2+c~2-ab-bc-ca) ……(A)=1/2(a+b+c)[(a-b)~2+(b-c)~2  相似文献   

18.
1938年,费恩斯列尔——啥德维格尔提出了如下的不等式: 设ΔABC的三边为a、b、c,面积为Δ,则 a~2+b~2+c~2≥4(3~(1/2))Δ+(a-b)~2+(b-c)~2+(c-a)~2 (1) 其中等号当且仅当a=6=c时成立。 1983年,王玉怀首次把不等  相似文献   

19.
文[1]中有一组不等式:已知a,b,c为正数,则 (1/a~2 b~2 ab) (1/b~2 c~2 bc)>(1/c~2 a~2 ac)(1) (1/a~2 b~2) (1/b~2 c~2)>(1/c~2 a~2)(2) (1/a~2 b~2-ab) (1/b~2 c~2-bc)>  相似文献   

20.
我们记P(a、b、c)=a~3+b~3+c~3-3abc这个多项式的因式分解公式为: P(a、b、c)=a~3+b~3+c~3-3abc=(a+b +c)(a~2+b~2+c~2-ab-bc-ca), 这个公式在因式分解中,在多项式的恒等变换中以及在解方程中都有一定的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号