首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于多体动力学理论,通过ADAMS/CAR建立双横臂悬架的仿真模型。采用DOE试验设计方法对悬架模型进行优化,判断对悬架KC特性影响较大的关键硬点。结合NSGA-Ⅱ遗传算法,利用ADAMS-ISIGHT联合仿真对硬点进行多目标优化,获得关键硬点的pareto最优解集。通过验证,结果表明,优化后的双横臂悬架在车轮跳动过程中,车轮前束角、外倾角和轮距变化范围更小,有利于减少轮胎磨损,提高汽车操纵稳定性。  相似文献   

2.
Power-system stability improvement by a static synchronous series compensator (SSSC)-based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite-bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. Simulation results are presented and compared with a recently published modern heuristic optimization technique under various disturbances to show the effectiveness and robustness of the proposed approach. The performances of the proposed controllers are also evaluated under N−2 contingency situation.  相似文献   

3.
The optimal location of a static synchronous compensator (STATCOM) and its coordinated design with power system stabilizers (PSSs) for power system stability improvement are presented in this paper. First, the location of STATCOM to improve transient stability is formulated as an optimization problem and particle swarm optimization (PSO) is employed to search for its optimal location. Then, coordinated design problem of STATCOM-based controller with multiple PSS is formulated as an optimization problem and optimal controller parameters are obtained using PSO. A two-area test system is used to show the effectiveness of the proposed approach for determining the optimal location and controller parameters for power system stability improvement. The nonlinear simulation results show that optimally located STATCOM improves the transient stability and coordinated design of STATCOM-based controller and PSSs improve greatly the system damping. Finally, the coordinated design problem is extended to a four-machine two-area system and the results show that the inter-area and local modes of oscillations are well damped with the proposed PSO-optimized controllers.  相似文献   

4.
This paper is concerned with the linear quadratic (LQ) Pareto game of the stochastic singular systems in infinite horizon. Firstly, the optimal control problem of the weighted sum cost functional is discussed. Utilizing the equivalent transformation method, the weighted sum LQ optimal control problem is transformed into a stochastic LQ optimization problem. Based on the classical stochastic LQ optimal control theory, the necessary and sufficient condition for the solvability of the indefinite weighted sum LQ optimal control is put forward. Then, the LQ Pareto game of the stochastic singular systems is studied. By the discussion of the convexity of the cost functionals, a sufficient condition for the existence of the Pareto solutions is obtained via the solvability of the corresponding generalized algebraic Riccati equation (GARE). Moreover, we derive all Pareto solutions based on the solution of a Lyapunov equation. Finally, an example is given to show the effectiveness of the proposed results.  相似文献   

5.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

6.
《Journal of The Franklin Institute》2021,358(18):10165-10192
This paper develops a damage-risk assessing method with dynamic feature extraction optimization (DFEO) in the Thermal-wave image technique, to evaluate the hypervelocity impact (HVI) damages in dynamic meteoroid/orbital debris (M/OD) environment rapidly. The proposed DFEO not only investigates how to select effectively each representative temperature point (RTP) with consideration of similarities and differences of thermal characteristic data, but also studies how to utilize historical information to extract rapidly impact damage feature from thermal image sequence. A multi-directional prediction method (MPM) in DFEO calculates the degree of environment change to depict the configuration of previous Pareto set (PS) and predict the moving directions of the optimal solutions. Meanwhile, a dynamic multi-objective particle-swarm optimization strategy (DM-PSOS) in DFEO guarantees that the obtained initial population evolves successfully to Pareto Front (PF). Besides DFEO, the assessing method contains variable step-size search, clustering analysis and damage visualization, to enhance the detection efficiency. The experimental study on HVI damage detection demonstrates the capabilities of the proposed method.  相似文献   

7.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

8.
Aligning time series of different sampling rates is an important but challenging task. Current commonly used dynamic time warping methods usually suffer from pathological temporal singularity problem. In order to overcome this, we transform the alignment task to a spatial-temporal multi-objective optimization (MOO) problem. Existing MOO algorithms are always inefficient in finding Pareto optimal alignment solutions due to their insufficiency in maintaining convergence and diversity among the obtained Pareto solutions. In light of this, we propose a novel and efficient MOO algorithm Cell-MOWOA which integrates Cellular automata with the rising Whale Optimization Algorithm to find Pareto optimal alignment solutions. Innovative multi-variate non-linear cell state evolutionary rules are designed within Pareto solution external archive to improve the convergence and diversity of the Pareto solutions, and novel whale population updating mechanism is designed to accelerate the convergence to the Pareto front. Besides, new integer whale updating mechanism is presented to transform real-number whale solutions to integer whale solutions. Experimental results on 85 gold-standard UCR time series datasets showed that Cell-MOWOA outperformed six state-of-the-art baselines by 24.53% in average in increasing alignment accuracy and 42.66% in average in reducing singularity. Besides, it achieved outstanding runtime efficiency, especially on long time series datasets.  相似文献   

9.
In order to improve the response speed and control precision of the braking system with parameters uncertainty and nonlinear friction, a braking-by-wire system based on the electromagnetic direct-drive valve and a novel cascade control algorithm was proposed in this paper. An electromagnetic linear actuator directly drives the valve spool and rapidly adjusts the pressure of braking wheel cylinders. A dynamic model of electromagnetic direct-drive valve considering improved LuGre dynamic friction is established. A novel cascade control algorithm with an outside loop pressure fuzzy controller and an inside loop electromagnetic direct-drive valve position controller was proposed. An adaptive integral robust inside loop controller is designed by combining friction compensation adaptive control law, linear feedback, and integral robust control. The uncertainty parameters and the friction state are estimated online. The stability of the cascade controller is proved by the Lyapunov method. Then a multi-objective opitimizemization design method of control parameters is proposed, which combines a multi-objective game theory and a technique for order preference by similarity to ideal solution (TOPSIS) based on entropy weight. The results show that the pressurization time of cascade control is less than 0.09 s under the 15 MPa step target signal. The control precision is improved effectively by the cascade controller under the ARTEMIS condition.  相似文献   

10.
11.
《Journal of The Franklin Institute》2019,356(17):10196-10215
This paper deals with the large category of convex optimization problems on the framework of second-order multi-agent systems, where each distinct agent is assigned with a local objective function, and the overall optimization problem is defined as minimizing the sum of all the local objective functions. To solve this problem, two distributed optimization algorithms are proposed, namely, a time-triggered algorithm and an event-triggered algorithm, to make all agents converge to the optimal solution of the optimization problem cooperatively. The main advantage of our algorithms is to remove unnecessary communications, and hence reduce communication costs and energy consumptions in real-time applications. Moreover, in the proposed algorithms, each agent uses only the position information from its neighbors. With the design of the Lyapunov function, the criteria about the controller parameters are derived to ensure the algorithms converge to the optimal solution. Finally, numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

12.
In this paper, we propose tuning rules for one degree-of-freedom proportional-integral-derivative controllers, by considering important aspects such as the trade-off in the performance in the servo and regulation operation modes and the control system robustness by constraining the maximum sensitivity peak. The different conflicting objectives are dealt with by using a multi-objective optimization algorithm to generate the trade-off optimal solutions. In this context, a simple tuning rule is determined by using the Nash solutions as a multi-criteria decision making technique. The Nash criteria is shown to provide convenient trade-off solutions for the controller tuning problem. Illustrative simulation examples show the effectiveness of the method.  相似文献   

13.
基于多目标优化的信用风险管理   总被引:2,自引:0,他引:2  
信用风险管理是银行管理的核心内容。近年虽然不乏测度银行信用风险方面的研究,但都只限于考虑风险最低的单目标模型。以追求风险与收益系统均衡为出发点,提出了测度银行信用风险的二元目标优化模型,解决了信用风险管理过程中低风险和高收益的辨证统一问题。将遗传算法引进二元目标优化模型的求解,极大地提高了模型的求解效率。  相似文献   

14.
The operational space control of a robot manipulator using external sensors requires stabilizing the compound system {external sensors - outer controller - inner controller - robot manipulator}. The user must access the inner controller to reshape it to achieve this stabilization. Due to intellectual property protection purposes, most industrial robots have an unknown or inaccessible inner controller. Therefore, it is tricky to design a stable control scheme. To solve this problem, an adaptive radial basis function neural network (RBF NN) outer controller is proposed, which approximates the inner controller’s dynamics to eliminate its effect in the closed-loop. An inherent property for RBF NN is used to reduce the number of adaptive parameters. Since this technique introduces approximation errors, it is included in the control scheme, a term that constrains the system to converge rapidly to the performances prescribed by the user. It is proved that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB) through Lyapunov theory. The effectiveness of the proposed approach is verified through simulation comparisons and experimental studies.  相似文献   

15.
Evolutionary structural design has been the topic of much recent research; however, such designs are usually hampered by the time-consuming stage of prototype evaluations using standard finite element analysis (FEA). Replacing the time-consuming FEA by neural network approximations may be a computationally efficient alternative, but the error in such approximation may misguide the optimization procedure. In this paper, a multi-objective meta-level (MOML) soft computing-based evolutionary scheme is proposed that aims to strike a balance between accuracy vs. computational efficiency and exploration vs. exploitation. The neural network (NN) is used here as a pre-filter when fitness is estimated to be of lesser significance while the standard FEA is used for solutions that may be optimal in their current population. Furthermore, a fuzzy controller updates parameters of the genetic algorithm (GA) in order to balance exploitation vs. exploration in the search process, and the multi-objective GA optimizes parameters of the membership functions in the fuzzy controller. The algorithm is first optimized on two benchmark problems, i.e. a 2-D Truss frame and an airplane wing. General applicability of the resulting optimization algorithm is then tested on two other benchmark problems, i.e. a 3-layer composite beam and a piezoelectric bimorph beam. Performance of the proposed algorithm is compared with several other competing algorithms, i.e. a fuzzy-GA-NN, a GA-NN, as well as a simple GA that only uses only FEA, in terms of both computational efficiency and accuracy. Statistical analysis indicates the superiority as well as robustness of the above approach as compared with the other optimization algorithms. Specifically, the proposed approach finds better structural designs more consistently while being computationally more efficient.  相似文献   

16.
This paper deals with the problem of model reference control for linear parameter varying (LPV) systems. The LPV systems under consideration depend on a set of parameters that are bounded and available online. The main contribution of this paper is to design an LPV model reference control scheme for LPV systems whose state-space matrices depend affinely on a set of time-varying parameters that are bounded and available online. The design problem is divided into two subproblems: the design of the coefficient matrices of the controller and the design of the gain of the state feedback controller for LPV systems. The singular value decomposition is used to obtain the coefficient matrices, while the linear matrix inequality methodology is used to obtain the parameter-dependent state feedback gain of the control scheme. A simple numerical example is used to illustrate the proposed design and a coupled-tank process example is used to demonstrate the usefulness and practicality of the proposed design. Simulation and experimental results indicate that the proposed scheme works well.  相似文献   

17.
产品可靠性与供应链集成优化设计研究   总被引:1,自引:0,他引:1  
在分析产品结构与供应链集成设计的基础上,提出产品可靠性与供应链集成优化设计方法,建立了以产品可靠度与供应链成本为多目标的产品可靠性与供应链集成优化模型。基于NSGAII算法,提出把约束优化模型转换为无约束优化问题的思路,并给出集成优化模型求解方法。结合某矿山机械厂的应用实例,对不同保修期下的产品可靠性与供应链多目标组合集成优化模型进行分析与验证研究。  相似文献   

18.
In this paper, the problem of the predefined-time tracking with time-varying output constraints (TVOC) is investigated for a class of nonlinear strict-feedback systems. First, the sufficient conditions for the studied problem are presented. Then, a recursive design algorithm of the controller is proposed by backstepping technique. A novel stabilizing function is constructed by adding a fractional term, which is capable of decreasing the asymmetric time-varying Barrier Lyapunov Function (BLF) to the origin within any desired settling time. After that, it is shown that under our proposed control, all the closed-loop signals are bounded, and the tracking error converges to zero within any desired settling time and remains zero thereafter without the violation of the output constraint. The settling time in this paper is not only independent of the design parameters, nor does it depend on the initial conditions, and can be set according to per our will. Finally, two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

19.
This paper presents the design and performance analysis of Proportional Integral Derivate (PID) controller for an Automatic Voltage Regulator (AVR) system using recently proposed simplified Particle Swarm Optimization (PSO) also called Many Optimizing Liaisons (MOL) algorithm. MOL simplifies the original PSO by randomly choosing the particle to update, instead of iterating over the entire swarm thus eliminating the particles best known position and making it easier to tune the behavioral parameters. The design problem of the proposed PID controller is formulated as an optimization problem and MOL algorithm is employed to search for the optimal controller parameters. For the performance analysis, different analysis methods such as transient response analysis, root locus analysis and bode analysis are performed. The superiority of the proposed approach is shown by comparing the results with some recently published modern heuristic optimization algorithms such as Artificial Bee Colony (ABC) algorithm, Particle Swarm Optimization (PSO) algorithm and Differential Evolution (DE) algorithm. Further, robustness analysis of the AVR system tuned by MOL algorithm is performed by varying the time constants of amplifier, exciter, generator and sensor in the range of ?50% to +50% in steps of 25%. The analysis results reveal that the proposed MOL based PID controller for the AVR system performs better than the other similar recently reported population based optimization algorithms.  相似文献   

20.
To decrease the communication frequency between the controller and the actuator, this paper addresses the spacecraft attitude control problem by adopting the event-triggered strategy. First of all, a backstepping-based inverse optimal attitude control law is proposed, where both the virtual control law and the actual control law are respectively optimal with respect to certain cost functionals. Then, an event-triggered scheme is proposed to realize the obtained inverse optimal attitude control law. By designing the event triggering mechanism elaborately, it is guaranteed that the trivial solution of the closed-loop system is globally exponentially stable and there is no Zeno phenomenon in the closed-loop system. Further, the obtained event-triggered attitude control law is modified and extended to the more general case when the disturbance torque cannot be ignored. It is proved that all states of the closed-loop system are bounded, the attitude error can be made arbitrarily small ultimately by choosing appropriate design parameters and the Zeno phenomenon is excluded in the closed-loop system. In the proposed event-triggered attitude control approaches, the control signal transmitted from the controller to the actuator is only updated at the triggered time instant when the accumulated error exceeds the threshold defined elaborately. Simulation results show that by using the proposed event-triggered attitude control approach, the communication burden can be significantly reduced compared with the traditional spacecraft control schemes realized in the time-triggered way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号