首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出圆锥曲线各种变动弦中点轨迹方程的统一求法,这种求法程序简单,便于记忆和应用。在此基础上就几类常见的弦中点轨迹问题分别举例加以说明。 一、一般圆锥曲线变动弦中点轨迹的统一方程及求法 引理:设圆锥曲线C的方程为:F(x,y)=Ax~2 Bxy Cy 2 Dx Ey F=0(1)记Fx(x,y)=2Ax By D,F'y(x,y)=Bx 2Cy E假如C以己知点M(Xo,yo)为中点的弦存在,则该弦所在直线的方程为:  相似文献   

2.
直线l过点M(x0,y0),倾斜角为α,则其参数方程是x=x0 tcosα,y=y0 tsinα,其中参数t表示该直线上任意一点N对应的有向线段MN的数量,没该直线与圆锥曲线交于A、B两点,当定点M(x0,y0)是弦AB的中点时,有t1 t2=0;当某点P是弦AB的中点时,则点P对应的t=1/2(t1 t2),利用上述两个结果求解与弦的中点相关的问题时,相当简便.  相似文献   

3.
二元二次齐方程Ax2 Bxy Cy2=0,当B2-4AC>0时所表示的曲线是过坐标原点的两条直线.此统一方程在求解直线与圆锥曲线的有关问题时有着巧妙的用途,其思想方法如下:若把圆锥曲线的弦所在直线方程ax by=1代入圆锥曲线方程,将其转化为关于x、y的二次齐次方程Ax2 Bxy Cy2=0,再化成C(y/x)2 B(y/x) A=0的形式,则弦的两个端点A(x1,y1)、B(x2,y2)与原点的两条连线的斜率k1=y1/x1,k2=y2/x2为其两根,从而利用韦达定理可使相关问题获解.下面举例加以说明.  相似文献   

4.
若ax^2+bx+c=0(a,b,c∈R,且a≠0)有两实根x1,x2,则x1+x2=-b/a.我们常用这个韦达定理解决解析几何中的直线和圆锥曲线相交问题,如直线l:y=kx+t与圆锥曲线C:f(x,y)=0相交于不同两点A,B,  相似文献   

5.
一、有关圆锥曲线中点弦的斜率问题此类问题常设弦的两端点坐标为(x1,y1)、(x2,y2),分别代入圆锥曲线方程后,设法变换出表示弦的斜率的式子,从而使问题获解。例:已知直线L交椭圆于M、N两点,B(0,4)为椭圆与y轴正方向的交点。若△BNM的重心恰重合于椭圆的右焦点.试求L的方程如(图1)分析:解答本题的关键是求点P的坐标和前线L的斜率。注意到P是MN的中点,因此这是一个与中点弦斜率有关的问题。P(3,-2),设M(x1,y1),N(x2,y2)代入椭圆方程后相减:4(x1+x2)(x1-x2)+5(y1+y2)(y1-y2)=0L的方程为…  相似文献   

6.
圆锥曲线极点与极线的一组性质   总被引:3,自引:0,他引:3  
1圆锥曲线极点和极线的定义 已知圆锥曲线C:Ax^2+Cy^2+2Dx+ZEy+F=0(A^2+C^2≠0),则称点P(x0,y0)和直线l:Ax0x+Cy0y+D(x+xo)+E(y+y0)+F=0是圆锥曲线C的一对极点和极线.  相似文献   

7.
直线与圆椎曲线的位置关系是高考中的重点,一般方法是直线方程与圆锥曲线方程联立,利用韦达定理,但计算量较大.可设出A(x1,y1)、B(x2,y2),但不求出x1、x2、y1、y2,而是借助于一元二次方程根与系数的关系,整体代入使问题简化,不妨简称为“设点法”。采用“设点法”解有关圆锥曲线弦的问题,特别是有关圆锥曲线弦的中点问题会使计算简单化.下面通过几道例题加以验证.  相似文献   

8.
圆锥曲线弦的中点问题是解析几何中的基本问题,同时也是历届高考中出现得最多的一类问题.下面,我们给出一种处理此类问题的统一的较为简捷的方法:即若圆锥曲线F(x,y)=0的弦AB的中点为(x,y),则可设A(x+m,y+n),B(x-m,y—n).当直线AB的斜率存在时k=n/m,  相似文献   

9.
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-…  相似文献   

10.
文[1]论述了圆锥曲线的动弦的两端与曲线上定点连线的斜率之积为定值时动弦过定点的性质,本文将探讨斜率之和为定值时动弦过定点与有定向的性质.定理1椭圆b2x2+a2y2=a2b2上定点P(x0,y0)与椭圆上两点A、A'连线的斜率存在,则:(i)动弦AA’所在直线必过定点M(x0+a/bk·y0,b/ak·x0-y0为)(k≠0)的充要条件是PA、PA’的斜率之和为为定值-2k·b/a;(ii)动弦AA'必有定向(kAA'=b2/a2·x0/y0)的充要条件是PA、PA'的斜率之和为0.比较(l)、(2)两式可知:直线AA’过定点(定值)所以动弦AA’有定向.推论(i)满足定…  相似文献   

11.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

12.
文[1],文[2],文[3]分别研究了直线方程x0x/a^2+y0y/b^2=1,x0x/a^2-y0y/b^2=1,y0y=p(x0+x)的儿何意义.受其启发,笔者通过超级厨板发现与上述直线方程有关的圆锥曲线的一个性质,现介绍如下.  相似文献   

13.
在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代人圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率.本文列举数例,以供参考.  相似文献   

14.
本文证明了命题:若圆锥曲线f_1(x,y)=0和f_2(x,y)=0的二次项系数相应相等且相交,则经过交点弦所在直线方程为f_1(x,y)-f_2(x,y)=0。从而推出命题:圆锥曲线f(x,y)=0被点M(m,n)所平分弦所在直线方程为f(x,y)-f(2m-x,2n-y)=0。并举例说明其应用。  相似文献   

15.
在平面几何中,设O是圆中定弦AB的中点,过O作两条任意弦CD和GH,若CH和GD分别交AB于P和Q,则OP=OQ(如图)。这就是著名的“蝴蝶定理”。笔者认为上述结论,可以推广到圆锥曲线中,为此,先证明以下引理:引理:以圆锥曲线的一条对称轴为y轴,轴上的点O为原点建立直角坐标系,若过点O的直线l1:y=k1x交圆锥曲线于两点C(x1,y1)、D(x2,y2),直线l2:y=k2x交圆锥曲线于两点G(x3,y3)、H(x4,y4),则有k1x1x2(x3+x4)=k2x3x4(x1+x2)………………………(!)证明:由圆锥曲线的对称轴为y轴,可设圆锥曲线的一般方程为ax2+cy2+dy+f=05(a≠0)……………(1)将直…  相似文献   

16.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

17.
最近文[2]对文[1]中关于抛物线的弦对顶点张直角的一个充要条件作了推广,得出椭圆和双曲线的弦对顶点张直角的几个充要条件.本文我们要探讨的问题是将圆锥曲线的顶点改为圆锥曲线上其它任意的一个定点时,若所张角依然为直角,那么弦会过定点吗?反之弦过此定点时,弦所张角会为直角吗?回答是肯定的,即有下面的:定理1设直线l交椭圆xa22+by22=1(a>b>0)于A,B两点,点M(x0,y0)是椭圆上不同于A,B两点的一个定点,则MA⊥MB的充要条件是直线l过定点Nx0(a2-b2)a2+b2,y0(ab22+-ba22).证明先证必要性:设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入方程x2a2…  相似文献   

18.
<正>我们知道,若设直线与圆锥曲线的两交点坐标分别为A(x1,y1),B(x2,y2),将它们分别代入圆锥曲线方程并对所得两式作差,可得到一个弦AB的中点坐标与直线AB的斜率(若斜率存在)之间的关系式,由此可以大大减小运算量,我们称这种代点作差的方法为"点差法".当然,"点差法"的运用有一定的局限性,类似的  相似文献   

19.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

20.
直线和圆锥曲线位置关系中的综合问题能有效地考查同学们的思维品质和创新能力,因此成为高考解析几何问题重点考查的热点内容,既常考不衰,又创新不断.1代点作差通性通法例1过M(1,1)的直线交双曲线x42-y22=1于A、B2点,若M为弦AB的中点,求直线AB的方程.解法1显然直线AB不垂直于x轴,设其斜率为k,则其方程为y-1=k(x-1).由x24-y22=1,y-1=k(x-1)消去y得(1-2k2)x2-4k(1-k)x-2k2 4k-6=0.①设A(x1,y1),B(x2,y2),则x1、x2是方程①的2个根,又由于M为弦AB的中点,所以x12 x2=2k(1-k)1-2k2=1,所以k=21.经检验,当k=21时方程①的判别式大于零,所以直线…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号