首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
求两条异面直线所成的角 ,通常的方法是经过平移或补形后 ,求两条相交直线所成的平面角 .但有时难以作出这样的平面角 ,或即使作出了平面角 ,又会遇到繁琐的计算 .如果能应用下面的公式来求异面直线成所的角 ,往往会带来很大的方便 .     图 1定理 如图 1,线段AB的两端在直二面角M—CD—N的两个面内 ,并且与两个面所成的角为α和β ,若AB与CD所成的角为θ ,则 sin2 θ=sin2 α+sin2 β .证明 分别过A、B作棱CD的垂线AE和BF ,过B、E分别作CD和BF的平行线 ,使它们交于G ,连结AF、AG ,则∠ABG =θ,∠AEG=∠AGB =90° .…  相似文献   

2.
引理设Rt△ABC中,∠C=90°,CD是斜边上的高;过B点作BE⊥AB,BE=BC,连结AE,过E点作EF⊥AE交AB的延长线于F,则DB=BF.  相似文献   

3.
下面就如何求二面角的大小,送同学们五把钥匙.第一把钥匙,是“作一条,连一条”图1所谓“作一条,连一条”,如图1,由一个半平面内异于棱上的一点A作(或已作出)另一个半平面的垂线,垂足为B,过B向二面角的棱作一条垂线,垂足为C,连结AC,则由三垂线定理可知,∠ACB为二面角的平面角,再通过解三角形求出∠ACB的大小.【例1】如图2,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2,EB=1,求二面角C—DE—C1的正切值.解:∵C1C⊥面ABCD,过C作CG⊥DE于G,连结C1G,则由三垂线定理知,C1G⊥DE,∴∠C1GC为二面角C—DE—C1的平面角,在△C…  相似文献   

4.
原题:直线l交⊙O于A,B,点C与D是⊙O外l上的两点,且CA=CB,过C,D分别作割线CKL和DMN,连结KN,LM交国l分别于E,F,求证:AE=BF。 这是一道人们  相似文献   

5.
求异面直线间的距离为高中《立体几何》的难点.有关书刊介绍不少方法.本文旨在利用三角形面积射影给出它的求法。为此,先证明下面的命题: 若异面直线a,b所在平面成θ度的二面角α-l-β,且B‖l间的距离为c,则异面直线a,b间的距离d=csioθ (A) 证明:设a∈α b∈β在b上任取一点P,作PM⊥l,PN⊥α,M、N为垂足连结MN,由三垂线定理的逆定理知MN⊥l  相似文献   

6.
题目如图,在平面直角坐标系xOy中,M,N分别是椭圆x^2/4+y^2=1的顶点,过坐标原点的直线交椭圆于P,A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为是k.  相似文献   

7.
郭文征  郭璋  胡郁  罗振华 《中等数学》2020,(2):47-49,F0004
高658如图1,四边形ABCD内接于QO,AC为直径,P为CA延长线上的点,过点C作O0的切线Z,过点D作PD的垂线与直线I交于点E,过点B作PB的垂线与直线I交于点F,DE与BF交于点M,N为EF的中点。证明:ON平分CM.  相似文献   

8.
<正>在平面几何中,我们有著名的蝴蝶定理(Butterfly theorem):设F是圆内弦PQ的中点,过点F作弦AB和CD,设AD和BC各相交PQ于点M,N,则F是MN的中点.笔者通过对蝴蝶定理的解读,尝试将其在抛物线中类比探索研究,得到:结论如图1,过抛物线x2=4my(m>0)的焦点F任意作两条弦分别与抛物线交于点A,B,C,D,连结AC,BD交直线y=m于M,N两点,则M,N关于点F对称.  相似文献   

9.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

10.
已知三角形的三条边长可根据海伦公式求其面积,同样已知四面体的六条棱长亦可求其体积,本文给出求体积的一般公式。引理图,α∩β=l,O∈l,a∩b=O,β,a与l所成角为x,b与l所成角为y,a与b所成角为z,则二面角α—l—β的平面角s之余弦有 coss=cscx·cscy·cosz-ctgx·ctgy。证明:如图,在l上取一点C,使OC=1,过C点在a内作CA⊥l,交a于A,过C点在β内作CB⊥l交b于B,则∠ACB就是二面角a—l—β的平面角s。连AB,则  相似文献   

11.
段耀利 《成才之路》2010,(36):I0020-I0020
例题已知抛物线c:y=2x2,直线y=kx+2交c于A、B两点,M是线段AB的中点,过M作x轴的垂线交c于N。(1)证明:抛物线C在点N处的切线与AB平行;(2)是否存在实数k,  相似文献   

12.
万喜人 《中学教研》2006,(12):39-42
命题1 在四边形ABCD中,P是对角线AC,BD的交点.过P作一条直线分别交AB,CD于E、F,BF交AC于T,DE交AC于R,BR交AD于M,DT交BC于N,则M,P,N三点共线.  相似文献   

13.
2007年福建省理科20题:如图1,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且→QP· →QF=→FP·→FQ. (Ⅰ)求动点P的轨迹C的方程; (Ⅱ)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知MA=λ1AF,MB=λ 2 BF,求λ1+λ2的值. 我们很容易求出本题第(Ⅱ)问λ1+λ2为定值0,那么在一般情况下,在其他圆锥曲线中是否也是定值.对此我们做了研究,得到了下面的定理.  相似文献   

14.
求二面角的大小,主要方法是利用三垂线定理及其逆定理,要反复涉及线面垂直的性质和判定定理,学生在复杂的图形面前往往会感到无从下手,笔者经过细致的探索总结,在教学中引入“第三者”,即构造第三个平面(相对于二面角的两个半平面而言),再经过作两条垂线,很好地解决了这一问题. 如图1.在二面角α-α-β中,取A∈α,过A作AB⊥β于B,过B 作BC⊥α于C,连结AC,则AC⊥α,故∠ACB是该二面角的平面角,从中可以看出,第  相似文献   

15.
下面是加拿大一道奥林匹克数学竞赛题: 如图1所示汤刀是△ABC一边BC上的中 线,F是边AB上任一点,连结C不,交AD于点 “( ab摊 ac 加一麟’ac 阮一溯 E,证明 ZAF BF 乃E DE. 这道赛题的证明并不 难,有趣的是其证法却很B 多,下面作简要的解答. 1.利用正弦定理 由两点间的距离公式即得 ZA于,AE 月百厂~万万. 3.利用平面几何知识 (l)利用平行线性质 用平行线所截线段成 正弦定理是指三角形的边与所对角的正弦 成比例的关系. 解法1如图1,过D作DM// AB交CE 于M,则易知 乙1一艺3,乙2一4艺,BF一ZnM. 在△乃EF中,由正弦定理得 竺一丝二…  相似文献   

16.
题目(2013南京)如图1,AD是⊙0的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连结AC,过点C作CD∥AB,交AD于点D.连结AO并延长交BC于点M,交过点C的直线于点P,且〈BCP=〈ACD。  相似文献   

17.
两条异面直线所成角是立体几何中的一个重要概念,是研究空间图形位置关系的先导,因此求异面直线所成角一直是高考中的热点之一. 下面结合典型例题,介绍这类问题的常用求解策略.  一、借助特殊点作平行线,转化为求平面角图1例1  (2004·天津)在棱长为 2 的正方体ABCD A1B1C1D1 中, O 是底面ABCD 的中心,E、F分别是CC1、AD的中点.求异面直线 OE 和 FD1 所成角的余弦值.解析  过E作EG∥D1F,交BC于G,连结OG. 设∠OEG=θ,则θ即为异面直线OE 与FD1 所成的角. 取BC中点M,连结OM.在Rt△ECG中,EG= 12+122=52.在Rt△…  相似文献   

18.
<正>引例已知椭圆C:x2/a2+y2/b2=1(a>b>0)的焦距为4,且过点P(2(1/2),3(1/2)).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,22(1/2)),连结AE,过点A作AE的垂线交x  相似文献   

19.
定理 已知圆锥曲线C的焦点为F,其对应准线为l,定直线l1垂直于焦点所在的对称轴,过焦点F的直线l2交圆锥曲线C于M,N两点,交直线l1于P点.若M分有向线段PF的比为λ1,N分有向线段PF的比为λ2,则λ1+λ2为定值.  相似文献   

20.
1 基础知识西姆松定理 过三角形外接圆上异于顶点的任意一点作三边的垂线 ,则三垂足共线 (此线称为西姆松线 ) .证明 :如图 1 ,设P为△ABC的外接圆上任一点 ,从P向三边BC、CA、AB所在直线作垂线 ,垂足分别为L、M、N .连结PA、PC ,由P、N、A、M四点共圆 ,有∠PMN =∠PAN =∠PAB =∠PCB =∠PCL .又P、M、C、L四点共圆 ,有∠PML =∠PCL .故∠PMN =∠PML ,即L、N、M三点共线 .注 :此定理有许多证法 .例如 ,如图 1 ,连结PB ,令∠PBC =α ,∠PCB =β ,∠PCM =γ ,则∠PAM =α ,∠PAN =β ,∠PBN =γ ,且BL =PB…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号