首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

2.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

3.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

4.
This study analyzed the joint torque and the mechanical energy flow in the support legs of skilled male race walkers. Twelve race walkers were videotaped using a high-speed camera at a frame rate of 250 Hz set perpendicular to the sagittal plane of motion; their ground reaction forces were measured with two force platforms. A two-dimensional, 14-segment, linked model was used to calculate the kinetics of the support leg joints. In the initial part of the support phase, the mechanical energy flowed into the thigh and shank by the torque of the large hip extensors and knee flexors. In the middle part, the mechanical energy generated by the torque of the large plantar flexors flowed to the foot and from the foot to the shank by the ankle joint force. The mechanical energy flow by the forward joint force of the support hip was significantly related to the walking speed in the final part of the support phase. Our findings suggest that race walkers in the final part of the support phase should exert the torque of the knee extensors and hip flexors to transfer the mechanical energy more effectively to the support thigh and shank.  相似文献   

5.
Abstract

This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s-1. Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s-1). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s-1. Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.  相似文献   

6.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

7.
Muscle power patterns in the mid-acceleration phase of sprinting   总被引:3,自引:2,他引:1  
To assess the role of the lower limb joints in generating velocity in the mid-acceleration phase of sprinting, muscle power patterns of the hip, knee and ankle were determined. Six male sprinters with a mean 100 m time of 10.75 s performed repeated maximal sprints along a 35 m indoor track. A complete stride across a force platform, positioned at approximately 14 m into the sprint, was video-recorded for analysis. Smoothed coordinate data were obtained from manual digitization of (50 Hz) video images and were then interpolated to match the sampling rate of the recorded ground reaction force (1000 Hz). The moment at each joint was then calculated using inverse dynamics and multiplied by the angular velocity to determine the muscle power. The results showed a proximal-to-distal timing in the generation of peak extensor power during stance at the hip, the knee and then the ankle, with the plantar flexors producing the greatest peak power. Apart from a moderate power generation peak towards toe-off, knee power was negligible despite a large extensor moment throughout stance. The role of the knee thus appears to be one of maintaining the centre of mass height and enabling the power generated at the hip to be transferred to the ankle.  相似文献   

8.
The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: ?12.2 vs. –14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.  相似文献   

9.
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23?±?5 yrs; stature 1.78?±?0.06 m; mass 72.6?±?9.2?kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (?25 to ?9.3?BW?s?1; 60% likely beneficial reduction) and plantar sensation was increased (46–58?mm) with the insole. Fpeak (?0.1 to 0.14?BW) and velocity (?0.02 to 0.06?m?s?1) were similar. Stride length, flight and contact time were lower (?0.13 to ?0.01 m; ?0.02 to?0.01?s; ?0.016 to ?0.006?s) and stride rate was higher (0.01–0.07 steps?s?1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.  相似文献   

10.
Abstract

The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.  相似文献   

11.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

12.
Purpose: This study explored the effect of whole-body vibration (WBV) using accelerations of 2.56 g to 7.68 g on lower-body detraining. Methods: All participants (N = 20) were trained using a lower-body resistance-training program for 30 min twice per week from Week 0 to Week 6. At the end of the program, they were randomly assigned to a control group that performed no further training or a WBV group that performed a progressive static WBV program. Data for the 5-repetition-maximum (5RM) squat and extensors and flexors of the knee and ankle were collected at Weeks 0, 6, 8, 10, and 12 for all participants. Results: Two-way (condition vs. time) analysis of variance revealed that although the WBV group maintained strength in the 5RM from Week 6 through Week 8 and the control group had a lower 5RM in Week 8 from Week 6, no differences in the 5RM squat existed between the groups at Week 8. Two-way factorial multivariate analysis of variance revealed no differences between the groups at any of the time for torque of knee flexion, dorsiflexion, or plantar flexion. Conclusion: Static WBV of 2.56 g to 7.68 g did not attenuate detraining of the flexors and extensors of the knee and ankle.  相似文献   

13.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

14.
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2–14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: ?9.9 ± 0.9, hFF-FFS: ?9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one’s SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.  相似文献   

15.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

16.
ABSTRACT

Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen’s d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.  相似文献   

17.
Negative work, which is mainly generated by eccentric muscle contraction, has an important influence on the associated muscle damage. Generally, mechanical parameters are determined for one side of a lower extremity on the assumption of negligible between-limb differences. However, between-limb differences in the negative work of lower extremity joints during running remain unclear. This study examines between-limb differences in negative work and associated mechanical parameters during the contact phase of running. Twenty-five young adult males voluntarily participated in this study. Each participant was asked to run on a straight runway at a speed of 3.0?m?s?1. Negative work, amplitude, duration of negative power, moment, and angular velocity were computed for both sides of the lower extremities. Significant differences were found in negative work between limbs for the hip (18.9?±?11.7%), knee (13.6?±?10.4%), and ankle (11.8?±?8.5%) joints. For the hip joint, asymmetric negative work was attributable to the between-limb difference in the amplitude of negative power owing to a corresponding difference in the moment. The between-limb differences concerning the duration and amplitude of negative power could explain the asymmetric negative work in the knee joint. The asymmetric negative work of the ankle joint was attributable to the between-limb difference in the amplitude and duration of the negative power and the moment. These results indicate that asymmetric negative work was generated in each lower extremity joint; however, the major mechanical parameters corresponding to the negative work are not the same across the joints.  相似文献   

18.
The aim of this study was to assess the effect of a unilateral anterior cruciate ligament reconstruction (ACLR) on maximum voluntary contraction (MVC) and explosive strength of both the involved limb and the uninvolved limb. Nineteen male athletes completed a standard isometric testing protocol 4 months post-ACLR, while 16 healthy participants served as a control group (CG). The explosive strength of the knee extensors and flexors was assessed as RFD obtained from the slope of the force–time curves over various time intervals. Both muscle groups of the involved limb had significantly lower MVC compared to the uninvolved. The involved limb also had significantly lower RFD in the late phase of contraction (140–250 ms) for both knee extensors and flexors (P < 0.05). There was no difference in MVC between the uninvolved limb and the CG. However, RFD of the uninvolved limb was lower compared to CG for both knee extensors (0–180 ms; P < 0.01) and flexors (0–150 ms; P < 0.05). ACLR leads to lower MVC and explosive strength of the involved limb. As a consequence of potential crossover (presumably neural-mediated) effects, explosive strength deficits could be bilateral, particularly in the early phase of the contraction (<100 ms).  相似文献   

19.
Abstract

This study investigated the influence of dehydration during soccer-type intermittent exercise on isokinetic and isometric muscle function. Eight soccer players performed two 90-min high-intensity intermittent shuttle-running trials without (NF) or with (FL) fluid ingestion (5 ml · kg?1 before and 2 ml · kg?1 every 15 min). Isokinetic and isometric strength and muscular power of knee flexors and knee extensors were measured pre-exercise, at half-time and post-exercise using isokinetic dynamometry. Sprint performance was monitored throughout the simulated-soccer exercise. Isokinetic knee strength was reduced at faster (3.13 rad · s?1; P = 0.009) but not slower (1.05 rad · s?1; P = 0.063) contraction speeds with exercise; however, there was no difference between FL and NF. Peak isometric strength of the knee extensors (P = 0.002) but not the knee flexors (P = 0.065) was significantly reduced with exercise with no difference between FL and NF. Average muscular power was reduced over time at both 1.05 rad · s?1 (P = 0.01) and 3.14 rad · s?1 (P = 0.033) but was not different between FL and NF. Mean 15-m sprint time increased with duration of exercise (P = 0.005) but was not different between FL and NF. In summary, fluid ingestion during 90 min of soccer-type exercise was unable to offset the reduction in isokinetic and isometric strength and muscular power of the knee extensors and flexors.  相似文献   

20.
The purpose of this study was to investigate differences in the support leg joint moment and moment power between side-step (SS) and cross-step (CS) cutting techniques with a prescribed 90° cutting angle. Ground reaction forces (1,000 Hz) and three-dimensional kinematics (250 Hz) of SS and CS cutting techniques were collected from 20 male college athletes. Normalised peak knee extension moment was larger in the SS technique than in the CS technique (0.40 ± 0.10 in SS; 0.26 ± 0.08 in CS). In the SS technique, the knee extensors ( ? 0.10 ± 0.06 in SS; ? 0.02 ± 0.04 in CS) and ankle plantarflexors ( ? 0.12 ± 0.05 in SS; ? 0.07 ± 0.03 in CS) did significantly more negative work (normalised). The direction change angle (40.5 ± 8.7° in SS; 33.0 ± 6.8° in CS) and the decrease in horizontal velocity of the centre of mass ( ? 0.63 ± 0.23 m/s in SS; ? 0.31 ± 0.23 m/s in CS) were significantly larger in the SS technique. These results suggest that the SS technique is an effective means of changing running direction at the expense of velocity of the centre of mass and that the CS technique is better for minimising the reduction in horizontal velocity of the centre of mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号